
Advanced MPI Programming

Pavan Balaji
Argonne	National	Laboratory

Email:	balaji@anl.gov
Web:	www.mcs.anl.gov/~balaji

Torsten Hoefler
ETH	Zurich

Email:	htor@inf.ethz.ch
Web:	http://htor.inf.ethz.ch/

Rajeev	Thakur
Argonne	National	Laboratory
Email:	thakur@mcs.anl.gov

Web:	www.mcs.anl.gov/~thakur

William	Gropp
University	of	Illinois,	Urbana-Champaign

Email:	wgropp@illinois.edu
Web:	www.cs.illinois.edu/~wgropp

Latest	slides	 and	code	examples	 are	available	at

www.mcs.anl.gov/~thakur/sc16-mpi-tutorial

Tutorial	at	SC16,	November	 2016

About the Speakers

§ Pavan Balaji:	Computer	Scientist,	Mathematics	and	Computer	
Science	Division,	Argonne	National	Laboratory

§ William	Gropp:	Professor,	University	of	Illinois,	Urbana-
Champaign;	Acting	Director,	NCSA

§ Torsten Hoefler:	Assistant	Professor,	ETH	Zurich	

§ Rajeev	Thakur:	Senior	Computer	Scientist,	Argonne	National	
Laboratory

§ All	four	of	us	are	deeply	involved	in	MPI	standardization	(in	
the	MPI	Forum)	and	in	MPI	implementation

Advanced	MPI,	SC16	(11/14/2016) 2

Outline

Morning

§ Introduction
– MPI-1,	MPI-2,	MPI-3

§ Running	example:	2D	stencil	code	
– Simple	point-to-point	version

§ Derived datatypes
– Use	in	2D	stencil	code

§ One-sided	 communication
– Basics	 and	new	features	 in	MPI-3

– Use	 in	2D	stencil	 code

– Advanced	topics

• Global	address	space	
communication

Afternoon

§ MPI	and	Threads
– Thread	safety	specification	in	MPI
– How	it	enables	hybrid	programming
– Hybrid	(MPI	+	shared	memory)	version	

of	2D	stencil	code

§ Nonblocking collectives
– Parallel	FFT	example

§ Process	 topologies
– 2D	stencil	example

§ Neighborhood	collectives
– 2D	stencil	example

§ Recent	efforts	 of	the	MPI	Forum
§ Conclusions

3 3Advanced	MPI,	SC16	(11/14/2016)

MPI-1

§ MPI	is	a	message-passing	library	interface	standard.
– Specification,	 not	implementation
– Library,	not	a	language

§ MPI-1	supports	the	classical	message-passing	programming	
model:	basic	point-to-point	communication,	collectives,	
datatypes,	etc

§ MPI-1	was	defined	(1994)	by	a	broadly	based	group	of	
parallel	computer	vendors,	computer	scientists,	and	
applications	developers.
– 2-year	intensive	 process

§ Implementations	appeared	quickly	and	now	MPI	is	taken	
for	granted	as	vendor-supported	software	on	any	parallel	
machine.

§ Free,	portable	implementations	exist	for	clusters	and	other	
environments	(MPICH,	Open	MPI)

4 4Advanced	MPI,	SC16	(11/14/2016)

MPI-2

§ Same	process	of	definition	by	MPI	Forum

§ MPI-2	is	an	extension	of	MPI
– Extends	 the	message-passing	 model

• Parallel	 I/O

• Remote	memory	operations	 (one-sided)

• Dynamic	process	management

– Adds	other	 functionality
• C++	and	Fortran	90	bindings

– similar	to	original	C	and	Fortran-77	bindings

• External	 interfaces

• Language	 interoperability

• MPI	interaction	with	threads

5 5Advanced	MPI,	SC16	(11/14/2016)

6

Timeline of the MPI Standard
§ MPI-1	(1994),	presented	 at	SC’93

– Basic	point-to-point	communication,	collectives,	datatypes,	etc

§ MPI-2	(1997)
– Added	parallel	I/O, Remote	Memory	Access	(one-sided	operations),	dynamic	processes,

thread	support,	C++	bindings,	…

§ ---- Stable	for	10	years	----

§ MPI-2.1	(2008)
– Minor	clarifications	and	bug	fixes	to	MPI-2

§ MPI-2.2	(2009)
– Small	updates	and	additions	to	MPI	2.1

§ MPI-3.0	(2012)
– Major	new	features	and	additions	to MPI

§ MPI-3.1	(2015)
– Minor	updates	and	fixes	to	MPI	3.0

Advanced	MPI,	SC16	(11/14/2016)

Overview of New Features in MPI-3
§ Major	new	features

– Nonblocking collectives
– Neighborhood	collectives
– Improved	one-sided	communication	interface
– Tools	interface
– Fortran	2008	bindings

§ Other	new	features
– Matching	Probe	and	Recv for	thread-safe	probe	and	receive	
– Noncollective communicator	creation	function
– “const”	correct	C	bindings
– Comm_split_type function
– Nonblocking Comm_dup
– Type_create_hindexed_block function

§ C++	bindings	removed
§ Previously	deprecated	 functions	removed
§ MPI	3.1	added	nonblocking collective	 I/O	functions

7Advanced	MPI,	SC16	(11/14/2016)

Status of MPI-3.1 Implementations

M
PI
CH

M
VA

PI
CH

Op
en

M
PI

Cr
ay

Ti
an
he

In
te
l

IB
M SG
I

Fu
jit
su

M
S

M
PC

NE
C

Su
nw

ay

RI
KE
N

BG/Q	1 PE 2 Spectrum Platform

NBC ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Nbr.	Coll. ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✔ ✔ ✔ ✔

RMA ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ Q2’17 ✔ ✔ ✔

Shr.	mem ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ * ✔ ✔ ✔

MPI_T ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ * Q1’17 ✔ ✔ ✔

Comm-create	
group ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ * ✔ ✔ ✔

F08	Bindings ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✘ ✘ Q1’17 ✔ ✔ ✔

New	Dtypes ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Large	Counts ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ Q1’17 ✔ ✔ ✔

MProbe ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ Q1’17 ✔ ✔ ✔

NBC	I/O ✔ Q4’16 ✔ ✔ ✘ ✔ ✘ ✘ ✔ ✘ ✔ ✘ ✘ Q1’17 ✔ ✘ ✔

1 Open	Source	but	unsupported 2 No	MPI_T	 variables	exposed *	Under	development (*)	Partly	done

Release	dates	are	estimates	and	are	subject	to	change	at	any	time.
“✘”	 indicates	no	publicly	announced	plan	to	implement/support	that	feature.

Platform-specific	restrictions	might	apply	to	the	supported	features

Important considerations while using MPI

§ All	parallelism	is	explicit:	the	programmer	is	responsible	for	
correctly	identifying	parallelism	and	implementing	parallel	
algorithms	using	MPI	constructs

9Advanced	MPI,	SC16	(11/14/2016)

Web Pointers

§ MPI	standard	 :	http://www.mpi-forum.org/docs/docs.html

§ MPI	Forum	:	http://www.mpi-forum.org/

§ MPI	implementations:	
– MPICH	:	http://www.mpich.org

– MVAPICH	:	http://mvapich.cse.ohio-state.edu/

– Intel	MPI:	http://software.intel.com/en-us/intel-mpi-library/

– Microsoft	MPI:	https://msdn.microsoft.com/en-us/library/bb524831%28v=vs.85%29.aspx

– Open	MPI	:	http://www.open-mpi.org/

– IBM	MPI,	Cray	MPI,	HP	MPI,	TH	MPI,	…

§ Several	MPI	tutorials	can	be	found	on	the	web

Advanced	MPI,	SC16	(11/14/2016) 10

New Tutorial Books on MPI

Advanced	MPI,	SC16	(11/14/2016) 11

§ For	basic	MPI
– Using	MPI,	3rd edition,	2014,	by	William	Gropp,	Ewing	Lusk,	and	Anthony	Skjellum

– https://mitpress.mit.edu/using-MPI-3ed

§ For	advanced	MPI,	including	MPI-3

– Using	Advanced	MPI,	2014,	by	William	Gropp,	Torsten Hoefler,	Rajeev	Thakur,	
and	Ewing	Lusk

– https://mitpress.mit.edu/using-advanced-MPI

New Book on Parallel Programming Models
Edited	by	Pavan Balaji
• MPI: W.	Gropp and	R.	Thakur
• GASNet: P.	Hargrove
• OpenSHMEM: J.	Kuehn	and	S.	Poole
• UPC: K.	Yelick and	Y.	Zheng
• Global	Arrays: S.	Krishnamoorthy,	J.	Daily,	A.	Vishnu,	

and	B.	Palmer
• Chapel: B.	Chamberlain
• Charm++: L.	Kale,	N.	Jain,	and	J.	Lifflander
• ADLB: E.	Lusk,	R.	Butler,	and	S.	Pieper
• Scioto: J.	Dinan
• SWIFT: T.	Armstrong,	J.	M.	Wozniak,	M.	Wilde,	and	I.	

Foster
• CnC: K.	Knobe,	M.	Burke,	and	F.	Schlimbach
• OpenMP: B.	Chapman,	D.	Eachempati,	and	S.	

Chandrasekaran
• Cilk Plus: A.	Robison	and	C.	Leiserson
• Intel	TBB: A.	Kukanov
• CUDA: W.	Hwu and	D.	Kirk
• OpenCL: T.	Mattson

https://mitpress.mit.edu/models

12Advanced	MPI,	SC16	(11/14/2016)

Our Approach in this Tutorial

§ Example	driven
– 2D	stencil	code	used	as	a	running	example	 throughout	 the	tutorial

– Other	examples	used	to	illustrate	specific	 features

§ We	will	walk	through	actual	code

§ We	assume	familiarity	with basic	concepts	of	MPI-1

1313Advanced	MPI,	SC16	(11/14/2016)

Regular Mesh Algorithms

§ Many	scientific	applications	involve	the	solution	of	partial	
differential	equations	(PDEs)

§ Many	algorithms	for	approximating	the	solution	of	PDEs
rely	on	forming	a	set	of	difference	equations
– Finite	difference,	 finite	elements,	 finite	volume

§ The	exact	form	of	the	difference	equations	depends	on	the	
particular	method
– From	the	point	of	view	of	parallel	programming	 for	these	

algorithms,	 the	operations	 are	the	same

14Advanced	MPI,	SC16	(11/14/2016)

Poisson Problem

§ To	approximate	the	solution	of	the	Poisson	Problem	∇2u	=	f on	
the	unit	square,	with	u defined	on	the	boundaries	of	the	
domain	(Dirichlet boundary	conditions),	this	simple	2nd	order	
difference	scheme	is	often	used:
– (U(x+h,y)	 - 2U(x,y)	+	U(x-h,y))	 /	h2 +	

(U(x,y+h)	 - 2U(x,y)	+	U(x,y-h))	 /	h2 =	f(x,y)
• Where	the	solution	U	is	approximated	 on	a	discrete	 grid	of	points	x=0,	h,	2h,	
3h,	…	,	(1/h)h=1,	y=0,	h,	2h,	3h,	…	1.

• To	simplify	the	notation,	U(ih,jh)	is	denoted	Uij

§ This	is	defined	on	a	discrete	mesh	of	points	(x,y)	=	(ih,jh),	for	a	
mesh	spacing	“h”

15Advanced	MPI,	SC16	(11/14/2016)

The Global Data Structure

§ Each	circle	is	a	mesh	point

§ Difference	 equation	evaluated	 at	
each	point	involves	 the	four	
neighbors

§ The	red	“plus”	is	called	the	
method’s	 stencil

§ Good	numerical	algorithms	 form	a	
matrix	equation	Au=f;	solving	 this	
requires	 computing	Bv,	where	B	is	
a	matrix	derived	 from	A.	These	
evaluations	 involve	computations	
with	the	neighbors	 on	the	mesh.

16Advanced	MPI,	SC16	(11/14/2016)

The Global Data Structure

§ Each	circle	is	a	mesh	point

§ Difference	 equation	evaluated	 at	
each	point	involves	 the	four	
neighbors

§ The	red	“plus”	is	called	the	
method’s	 stencil

§ Good	numerical	algorithms	 form	a	
matrix	equation	Au=f;	solving	 this	
requires	 computing	Bv,	where	B	is	
a	matrix	derived	 from	A.	These	
evaluations	 involve	computations	
with	the	neighbors	 on	the	mesh.

§ Decompose	mesh	into	equal	 sized	
(work)	pieces

17Advanced	MPI,	SC16	(11/14/2016)

Necessary Data Transfers

18Advanced	MPI,	SC16	(11/14/2016)

Necessary Data Transfers

19Advanced	MPI,	SC16	(11/14/2016)

Necessary Data Transfers

§ Provide	access	 to	remote	data	through	a	halo exchange	 (5	point	stencil)

20Advanced	MPI,	SC16	(11/14/2016)

Necessary Data Transfers

§ Provide	access	 to	remote	data	through	a	halo exchange	 (9	point	with	
trick)

21Advanced	MPI,	SC16	(11/14/2016)

The Local Data Structure

§ Each	process	has	its	local	“patch”	of	the	global	array
– “bx”	and	“by”	are	 the	sizes	of	the	local	array

– Always	allocate	a	halo	around	the	patch
– Array	allocated	of	size	 (bx+2)x(by+2)

bx

by

22Advanced	MPI,	SC16	(11/14/2016)

2D Stencil Code Walkthrough

§ Code	can	be	downloaded	from	
www.mcs.anl.gov/~thakur/sc16-mpi-tutorial

Advanced	MPI,	SC16	(11/14/2016) 23

Datatypes

24Advanced	MPI,	SC16	(11/14/2016)

Introduction to Datatypes in MPI

§ Datatypes allow	users	to	serialize	arbitrary data	layouts	into	a	
message	stream
– Networks	provide	serial	channels

– Same	for	block	devices	and	I/O

§ Several	constructors	allow	arbitrary	layouts
– Recursive	 specification	possible

– Declarative specification	 of	data-layout
• “what”	and	not	“how”,	leaves	 optimization	 to	implementation	 (many
unexplored possibilities!)

– Choosing	the	right	constructors	 is	not	always	simple

25Advanced	MPI,	SC16	(11/14/2016)

Derived Datatype Example

Advanced	MPI,	SC16	(11/14/2016) 26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

contig contig contig

vector

indexed

struct

MPI’s Intrinsic Datatypes

§ Why	intrinsic	types?
– Heterogeneity,	 nice	to	send	a	Boolean	 from	C	to	Fortran

– Conversion	 rules	are	complex,	not	discussed	 here	

– Length	matches	 to	language	 types	
• No	sizeof(int)	mess

§ Users	should	generally	use	intrinsic	types	as	basic	types	for	
communication	and	type	construction

§ MPI-2.2	added	some	missing	C	types
– E.g.,	unsigned	 long	long	

27Advanced	MPI,	SC16	(11/14/2016)

MPI_Type_contiguous

§ Contiguous	array	of	oldtype

§ Should	not	be	used	as	last	type	(can	be	replaced	by	count)

Advanced	MPI,	SC16	(11/14/2016) 28

0 1 2 3 4 5 6 7 8 9 10 11

contig

1817150 1 2 3 4 5 6 7 8 9 10 11 12 14 16

struct struct struct

contig

13

MPI_Type_contiguous(int count, MPI_Datatype oldtype,
MPI_Datatype *newtype)

MPI_Type_vector

§ Specify	strided blocks	of	data	of	oldtype

§ Very	useful	for	Cartesian	arrays

Advanced	MPI,	SC16	(11/14/2016) 29

vector 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

struct struct

vector

19 20

struct struct

0 1 2 3 4 5 6 7 8 9 10 11

MPI_Type_vector(int count, int blocklen, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

Use Datatype in Halo Exchange

Advanced	MPI,	SC16	(11/14/2016) 30

bx

by

vector	(count=by,	blocklen=1,	
stride=bx+2,	 MPI_DOUBLE,	 …)

contig (count=bx,	MPI_DOUBLE,	 …)	or	
count	with	MPI_DOUBLE

2D Stencil Code with Datatypes Walkthrough

§ Code	can	be	downloaded	from	
www.mcs.anl.gov/~thakur/sc16-mpi-tutorial

Advanced	MPI,	SC16	(11/14/2016) 31

MPI_Type_create_hvector

§ Stride	is	specified	in	bytes	instead	of	size	of	oldtype

§ Useful	for	composition,	e.g.,	vector	of	structs

Advanced	MPI,	SC16	(11/14/2016) 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

struct struct

hvector

19

struct struct

vector

stride	=	3	oldtypes

stride	=	11	bytes

MPI_Type_create_hvector(int count, int blocklen, MPI_Aint stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_create_indexed_block

§ Pulling	irregular	subsets	of	data	from	a	single	array
– dynamic	codes	with	index	lists,	expensive	 though!

– blen=2

– displs={0,5,8,13,18}

Advanced	MPI,	SC16	(11/14/2016) 33

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Indexed_block

MPI_Type_create_indexed_block(int count, int blocklen,
int *array_of_displacements,
MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_indexed

§ Like	indexed_block,	but	can	have	different	block	lengths
– blen={1,1,2,1,2,1}

– displs={0,3,5,9,13,17}

Advanced	MPI,	SC16	(11/14/2016) 34

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

indexed

MPI_Type_indexed(int count, int* array_of_blocklens,
int *array_of_displacements,
MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_create_struct

§ Most	general	constructor,	allows	different	types	and	arbitrary	
arrays	(also	most	costly)

Advanced	MPI,	SC16	(11/14/2016) 35

0 1 2 3 4

struct

MPI_Type_create_struct(int count,
int *array_of_blocklens,
MPI_Aint *array_of_displacements,
MPI_Datatype *array_of_types,
MPI_Datatype *newtype)

MPI_Type_create_subarray

§ Convenience	function	for	creating	
datatypes for	array	segments

§ Specify	subarray of	n-dimensional	
array	(sizes)	by	start	(starts)	and	size	
(subsize)

Advanced	MPI,	SC16	(11/14/2016) 36

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

MPI_Type_create_subarray(int ndims, int* array_of_sizes,
int *array_of_subsizes, int *array_of_starts,
int order, MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_create_darray

§ Create	distributed	array,	supports	block,	cyclic	and	no	
distribution	for	each	dimension
– Very	useful	 for	I/O

MPI_Type_create_darray(int size, int rank, int ndims,
int array_of_gsizes[], int array_of_distribs[], int
array_of_dargs[], int array_of_psizes[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)

37Advanced	MPI,	SC16	(11/14/2016)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

MPI_BOTTOM and MPI_Get_address

§ MPI_BOTTOM	is	the	absolute	zero	address
– Portability	(e.g.,	may	be	non-zero	 in	globally	shared	memory)

§ MPI_Get_address
– Returns	 address	 relative	 to	MPI_BOTTOM

– Portability	(do	not	use	“&”	operator	 in	C!)

§ Very	important	to	
– build	struct datatypes

– If	data	spans	multiple	arrays

Advanced	MPI,	SC16	(11/14/2016) 38

int a = 4;
float b = 9.6;
MPI_Datatype struct;

MPI_Get_address(&a, &disps[0]);
MPI_Get_address(&b, &disps[1]);

MPI_Type_create_struct(count,
blocklens[], disps,
oldtypes[], &struct);

Commit, Free, and Dup

§ Types	must	be	committed	before	use
– Only	the	ones	that	are	used!

– MPI_Type_commit may	perform	 heavy	optimizations	 (and	will	
hopefully)

§ MPI_Type_free
– Free	MPI	resources	 of	datatypes

– Does	not	affect	 types	built	from	 it

§ MPI_Type_dup
– Duplicates	a	type

– Library	abstraction	 (composability)

39Advanced	MPI,	SC16	(11/14/2016)

Other Datatype Functions

§ Pack/Unpack
– Mainly	for	compatibility	to	legacy	libraries

– Avoid	using	it	yourself

§ Get_envelope/contents
– Only	for	expert	 library	developers

– Libraries	 such	as	MPITypes1 make	this	easier

§ MPI_Type_create_resized
– Change	extent	and	size	 (dangerous	 but	useful)

1http://www.mcs.anl.gov/mpitypes/

40Advanced	MPI,	SC16	(11/14/2016)

Datatype Selection Order

§ Simple	and	effective	performance	model:
– More	parameters	 ==	slower

§ predefined	<	contig <	vector	<	index_block <	index	<	struct

§ Some	(most)	MPIs	are	inconsistent	
– But	this	rule	is	portable

§ Advice	to	users:
– Construct	datatypes hierarchically	bottom-up

W.	Gropp et	al.:	Performance	Expectations	and	Guidelines	for	MPI	Derived	Datatypes

Advanced	MPI,	SC16	(11/14/2016) 41

Advanced Topics: One-sided Communication

One-sided Communication

§ The	basic	idea	of	one-sided	communication	models	is	to	
decouple	data	movement	with	process	synchronization
– Should	be	able	to	move	data	without	requiring	 that	the	remote	

process	 synchronize

– Each	process	exposes	 a	part	of	its	memory	to	other	processes

– Other	processes	 can	directly	read	from	or	write	to	this	memory

Process 1 Process 2 Process 3

Private
Memory

Private
Memory

Private
Memory

Process 0

Private
Memory

Remotely
Accessible
Memory

Remotely
Accessible
Memory

Remotely
Accessible
Memory

Remotely
Accessible
Memory

Global	
Address	
Space

Private
Memory

Private
Memory

Private
Memory

Private
Memory

43Advanced	MPI,	SC16	(11/14/2016)

Two-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

Memory
Segment

44Advanced	MPI,	SC16	(11/14/2016)

One-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

45Advanced	MPI,	SC16	(11/14/2016)

Comparing One-sided and Two-sided Programming

Process	0 Process	1

SEND(data)

RECV(data)

D
E
L
A
Y

Even	the	
sending	
process	 is	
delayed

Process	0 Process	1

PUT(data) D
E
L
A
Y

Delay	in	
process	1	
does	not	
affect	

process	0

GET(data)

46Advanced	MPI,	SC16	(11/14/2016)

MPI RMA can be efficiently implemented

§ “Enabling	Highly-Scalable	Remote	Memory	Access	Programming	with	MPI-3	One	Sided”	by	
Robert	Gerstenberger,	Maciej Besta,	Torsten Hoefler (SC13	Best	Paper	Award)

§ They	implemented	complete	MPI-3	RMA	for	Cray	Gemini	(XK5,	XE6)	and	Aries	(XC30)	
systems	on	top	of	lowest-level	Cray	APIs

§ Achieved	better	latency,	bandwidth,	message	rate,	and	application	performance	than	Cray’s	
MPI	RMA,	UPC,	and	Coarray Fortran

Lo
w
er
	is
	b
et
te
r

Hi
gh
er
	is
	b
et
te
r

Advanced	MPI,	SC16	(11/14/2016) 47

Application Performance with Tuned MPI-3 RMA

3D	FFT MILC

Distributed	Hash	Table Dynamic	Sparse	Data	Exchange

Hi
gh
er
	is
	b
et
te
r

Hi
gh
er
	is
	b
et
te
r

Lo
w
er
	is
	b
et
te
r

Lo
w
er
	is
	b
et
te
r

Gerstenberger,	Besta,	Hoefler (SC13)
Advanced	MPI,	SC16	(11/14/2016) 48

MPI RMA is Carefully and Precisely Specified

§ To	work	on	both	cache-coherent	 and	non-cache-coherent	 systems
– Even	though	there	aren’t	many	non-cache-coherent	 systems,	 it	is	designed	

with	the	future	in	mind

§ There	even	exists	a	formal	model	for	MPI-3	RMA	that	can	be	used	by	tools	
and	compilers	 for	optimization,	verification,	 etc.
– See	“Remote	 Memory	Access	Programming	 in	MPI-3”	by	Hoefler,	Dinan,	

Thakur,	Barrett,	Balaji,	Gropp,	Underwood.	ACM	TOPC,	July	2015.

– http://htor.inf.ethz.ch/publications/index.php?pub=201

Advanced	MPI,	SC16	(11/14/2016) 49

What we need to know in MPI RMA

§ How	to	create	remote	accessible	memory?

§ Reading,	Writing	and	Updating	remote	memory

§ Data	Synchronization

§ Memory	Model

50Advanced	MPI,	SC16	(11/14/2016)

Creating Public Memory

§ Any	memory	used	by	a	process	is,	by	default,	only	locally	
accessible
– X	=	malloc(100);

§ Once	the	memory	is	allocated,	the	user	has	to	make	an	
explicit	MPI	call	to	declare	a	memory	region	as	remotely	
accessible
– MPI	terminology	for	remotely	accessible	memory	is	a	“window”

– A	group	of	processes	 collectively	create	 a	“window”

§ Once	a	memory	region	is	declared	as	remotely	accessible,	all	
processes	in	the	window	can	read/write	data	to	this	memory	
without	explicitly	synchronizing	with	the	target	process

51Advanced	MPI,	SC16	(11/14/2016)

Process 1 Process 2 Process 3

Private
Memory

Private
Memory

Private
Memory

Process 0

Private
Memory
Private
Memory

Private
Memory

Private
Memory

Private
Memory

window window window window

Window creation models

§ Four	models	exist
– MPI_WIN_ALLOCATE

• You	want	to	create	a	buffer	and	directly	make	it	remotely	 accessible

– MPI_WIN_CREATE

• You	already	have	an	allocated	 buffer	that	you	would	 like	to	make	
remotely	accessible

– MPI_WIN_CREATE_DYNAMIC

• You	don’t	have	a	buffer	yet,	but	will	have	one	 in	the	future

• You	may	want	to	dynamically	add/remove	 buffers	to/from	the	window

– MPI_WIN_ALLOCATE_SHARED
• You	want	multiple	 processes	 on	the	same	node	share	a	buffer

52Advanced	MPI,	SC16	(11/14/2016)

MPI_WIN_ALLOCATE

§ Create	a	remotely	accessible	memory	region	in	an	RMA	window
– Only	data	exposed	 in	a	window	can	be	accessed	with	RMA	ops.

§ Arguments:
– size - size	of	local	data	in	bytes	(nonnegative	 integer)

– disp_unit - local	unit	size	for	displacements,	 in	bytes	(positive	 integer)

– info - info	argument	 (handle)

– comm - communicator	 (handle)

– baseptr - pointer	 to	exposed	 local	data

– win												- window	(handle)

53Advanced	MPI,	SC16	(11/14/2016)

MPI_Win_allocate(MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, void *baseptr,
MPI_Win *win)

Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)
{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);

/* collectively create remote accessible memory in a window */
MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Finalize(); return 0;
}

54Advanced	MPI,	SC16	(11/14/2016)

MPI_WIN_CREATE

§ Expose	a	region	of	memory	in	an	RMA	window
– Only	data	exposed	in	a	window	can	be	accessed	with	RMA	ops.

§ Arguments:
– base - pointer	to	local	data	to	expose
– size - size	of	local	data	in	bytes	(nonnegative	integer)
– disp_unit - local	unit	size	for	displacements,	in	bytes	(positive	integer)
– info - info	argument	(handle)
– comm - communicator	(handle)
– win													- window	(handle)

55Advanced	MPI,	SC16	(11/14/2016)

MPI_Win_create(void *base, MPI_Aint size,
int disp_unit, MPI_Info info,
MPI_Comm comm, MPI_Win *win)

Example with MPI_WIN_CREATE
int main(int argc, char ** argv)
{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);

/* create private memory */
MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a);
/* use private memory like you normally would */
a[0] = 1; a[1] = 2;

/* collectively declare memory as remotely accessible */
MPI_Win_create(a, 1000*sizeof(int), sizeof(int),

MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);
MPI_Free_mem(a);
MPI_Finalize(); return 0;

}

56Advanced	MPI,	SC16	(11/14/2016)

MPI_WIN_CREATE_DYNAMIC

§ Create	an	RMA	window,	to	which	data	can	later	be	attached
– Only	data	exposed	 in	a	window	can	be	accessed	with	RMA	ops

§ Initially	“empty”
– Application	can	dynamically	attach/detach	memory	to	this	window	by	

calling	MPI_Win_attach/detach
– Application	can	access	data	on	this	window	only	after	a	memory	

region	has	been	attached

§ Window	origin	is	MPI_BOTTOM
– Displacements	 are	segment	 addresses	 relative	 to	MPI_BOTTOM
– Must	tell	others	 the	displacement	 after	calling	attach

57Advanced	MPI,	SC16	(11/14/2016)

MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm,
MPI_Win *win)

Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc, char ** argv)
{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);
MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* create private memory */
a = (int *) malloc(1000 * sizeof(int));
/* use private memory like you normally would */
a[0] = 1; a[1] = 2;

/* locally declare memory as remotely accessible */
MPI_Win_attach(win, a, 1000*sizeof(int));

/* Array ‘a’ is now accessible from all processes */

/* undeclare remotely accessible memory */
MPI_Win_detach(win, a); free(a);
MPI_Win_free(&win);

MPI_Finalize(); return 0;
}

58Advanced	MPI,	SC16	(11/14/2016)

Data movement

§ MPI	provides	ability	to	read,	write	and	atomically	modify	data	
in	remotely	accessible	memory	regions
– MPI_PUT

– MPI_GET

– MPI_ACCUMULATE	 (atomic)

– MPI_GET_ACCUMULATE	 (atomic)

– MPI_COMPARE_AND_SWAP	 (atomic)

– MPI_FETCH_AND_OP (atomic)

59Advanced	MPI,	SC16	(11/14/2016)

Data movement: Put

§ Move	data	from origin,	to target

§ Separate	data	description	triples	for	origin and	target

60

Origin

MPI_Put(void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Win win)

Advanced	MPI,	SC16	(11/14/2016)

Target

Remotely	
Accessible	
Memory

Private	
Memory

Data movement: Get

§ Move	data	to origin,	from target

§ Separate	data	description	triples	for	origin and	target

61

Origin

MPI_Get(const void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Win win)

Advanced	MPI,	SC16	(11/14/2016)

Target

Remotely	
Accessible	
Memory

Private	
Memory

Atomic Data Aggregation: Accumulate

§ Atomic	update	operation,	 similar	to	a	put
– Reduces	origin	and	target	data	into	 target	buffer	 using	op	argument	as	combiner

– Op	=	MPI_SUM,	MPI_PROD,	MPI_OR,	MPI_REPLACE,	MPI_NO_OP,	…

– Predefined	 ops	only,	no	user-defined	 operations

§ Different	 data	layouts	between
target/origin	 OK
– Basic	type	elements	must	match

§ Op	=	MPI_REPLACE
– Implements	 f(a,b)=b

– Atomic	PUT

62

MPI_Accumulate(const void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)

Advanced	MPI,	SC16	(11/14/2016)

Origin Target

Remotely	
Accessible	
Memory

Private	
Memory

+=

Atomic Data Aggregation: Get Accumulate

§ Atomic	read-modify-write
– Op	=	MPI_SUM,	MPI_PROD,	MPI_OR,	MPI_REPLACE,	MPI_NO_OP,	…
– Predefined	ops	only

§ Result	stored	in	target	buffer
§ Original	data	stored	in	result	buf
§ Different	data	layouts	between

target/origin	OK
– Basic	type	elements	must	match

§ Atomic	get	with	MPI_NO_OP
§ Atomic	swap	with	MPI_REPLACE

63

MPI_Get_accumulate(const void *origin_addr,
int origin_count, MPI_Datatype origin_dtype,
void *result_addr,int result_count,
MPI_Datatype result_dtype, int target_rank,
MPI_Aint target_disp,int target_count,
MPI_Datatype target_dype, MPI_Op op, MPI_Win win)

Advanced	MPI,	SC16	(11/14/2016)

+=

Origin Target

Remotely	
Accessible	
Memory

Private	
Memory

Atomic Data Aggregation: CAS and FOP

§ FOP:	Simpler	version	of	MPI_Get_accumulate
– All	buffers	 share	a	single	predefined	 datatype

– No	count	argument	 (it’s	always	1)

– Simpler	interface	 allows	hardware	 optimization

§ CAS:	Atomic	swap	if	target	value	is	equal	to	compare	value

64

MPI_Compare_and_swap(void *origin_addr, void *compare_addr,
void *result_addr, MPI_Datatype dtype, int target_rank,
MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(void *origin_addr, void *result_addr,
MPI_Datatype dtype, int target_rank,
MPI_Aint target_disp, MPI_Op op, MPI_Win win)

Advanced	MPI,	SC16	(11/14/2016)

Ordering of Operations in MPI RMA

§ No	guaranteed	ordering	for	Put/Get	operations
§ Result	of	concurrent	Puts	to	the	same	locationundefined
§ Result	of	Get	concurrent	Put/Accumulate	undefined

– Can	be	garbage	in	both	cases

§ Result	of	concurrent	accumulate	operations	to	the	same	location	
are	defined	according	to	the	order	in	which	the	occurred
– Atomic	put:	Accumulate	with	op	=	MPI_REPLACE
– Atomic	get:	Get_accumulate with	op	=	MPI_NO_OP

§ Accumulate	operations	from	a	given	process	are	ordered	by	default
– User	can	tell	the	MPI	implementation	that	(s)he	does	not	require	ordering	

as	optimization	hint
– You	can	ask	for	only	the	needed	orderings:	RAW	(read-after-write),	WAR,	

RAR,	or	WAW

65Advanced	MPI,	SC16	(11/14/2016)

Examples with operation ordering

66

Process	0 Process	1

GET_ACC	 (y,	x+=2,	P1)

ACC	(x+=1,	 P1) x +=	2

x	+=	1y=2	

x	=	2

PUT(x=2,	 P1)

GET(y,	x,	P1)

x	=	2y=1

x	=	1

PUT(x=1,	 P1)

PUT(x=2,	 P1)

x	=	1

x	=	0

x	=	2
1.	Concurrent	Puts:	undefined

2.	Concurrent	Get	and	
Put/Accumulates:	 undefined

3.	Concurrent	Accumulate	 operations	
to	the	same	 location	:	 ordering	is	
guaranteed

Advanced	MPI,	SC16	(11/14/2016)

RMA Synchronization Models

§ RMA	data	access	model
– When	is	a	process	allowed	to	read/write	remotely	accessible	memory?
– When	is	data	written	by	process	X	is	available	for	process	Y	to	read?
– RMA	synchronization	models	define	these semantics

§ Three	synchronization	models	provided	by	MPI:
– Fence	(active	target)
– Post-start-complete-wait	(generalized	active	target)
– Lock/Unlock	(passive	target)

§ Data	accesses	occur	within	“epochs”
– Access	epochs:	contain	a	set	of	operations	issued	by	an	origin	process
– Exposure	epochs:	 enable	remote	processes	to	update	a	target’s	window
– Epochs	define	ordering	and	completion	semantics
– Synchronization	models	provide	mechanisms	for	establishing	epochs

• E.g.,	starting,	ending,	 and	synchronizing	 epochs

67Advanced	MPI,	SC16	(11/14/2016)

Fence: Active Target Synchronization

§ Collective	 synchronization	model

§ Starts	and ends	access	and	exposure	
epochs	on	all	processes	 in	the	window

§ All	processes	 in	group	of	“win”	do	an	
MPI_WIN_FENCE	 to	open	an	epoch

§ Everyone	 can	issue	PUT/GET	 operations	
to	read/write	 data

§ Everyone	 does	an	MPI_WIN_FENCE	 to	
close	the	epoch

§ All	operations	 complete	at	the	second	
fence	synchronization

68

Fence

Fence

MPI_Win_fence(int assert, MPI_Win win)

Advanced	MPI,	SC16	(11/14/2016)

P0 P1 P2

Implementing Stencil Computation with RMA Fence

69

Origin	buffers

Target	buffers

RMA	window

PUT

PU
T

PUT

PU
T

Advanced	MPI,	SC16	(11/14/2016)

70

Code Example

§ stencil_mpi_ddt_rma.c

§ Use	MPI_PUTs	to	move	data,	explicit	receives	are	not	needed

§ Data	location	specified	by	MPI	datatypes

§ Manual	packing	of	data	no	longer	required

Advanced	MPI,	SC16	(11/14/2016)

PSCW: Generalized Active Target Synchronization

§ Like	FENCE,	but	origin	and	target	 specify	
who	they	communicate	with

§ Target:	Exposure	epoch
– Opened	with	MPI_Win_post

– Closed	 by	MPI_Win_wait

§ Origin:	Access	epoch

– Opened	by	MPI_Win_start

– Closed	 by	MPI_Win_complete

§ All	synchronization	 operations	may	block,	
to	enforce	 P-S/C-W	ordering
– Processes	 can	be	both	origins	and	targets

71

Start

Complete

Post

Wait

Target Origin

MPI_Win_post/start(MPI_Group grp, int assert, MPI_Win win)
MPI_Win_complete/wait(MPI_Win win)

Advanced	MPI,	SC16	(11/14/2016)

Lock/Unlock: Passive Target Synchronization

§ Passive	mode:	One-sided,	 asynchronous communication

– Target	does	not	participate	 in	communication	operation

§ Shared	memory-like	model

72

Active	Target	Mode Passive	Target	Mode

Lock

Unlock

Start

Complete

Post

Wait

Advanced	MPI,	SC16	(11/14/2016)

Passive Target Synchronization

§ Lock/Unlock:	Begin/end	 passive	mode	epoch
– Target	process	does	not	make	a	corresponding	MPI	call
– Can	initiate	 multiple	 passive	target	epochs	to	different	 processes
– Concurrent	epochs	to	same	process	not	allowed	 (affects	threads)

§ Lock	type
– SHARED:	Other	processes	 using	shared	can	access	concurrently
– EXCLUSIVE:	No	other	processes	 can	access	 concurrently

§ Flush:	Remotely	complete	RMA	operations	 to	the	target	process
– After	completion,	 data	can	be	read	by	target	process	or	a	different	 process

§ Flush_local:	Locally	complete	RMA	operations	 to	the	target	process

MPI_Win_lock(int locktype, int rank, int assert, MPI_Win win)

73Advanced	MPI,	SC16	(11/14/2016)

MPI_Win_unlock(int rank, MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)

Advanced Passive Target Synchronization

§ Lock_all:	Shared	lock,	passive	target	epoch	to	all	other	
processes
– Expected	 usage	is	long-lived:	 lock_all,	put/get,	 flush,	…,	unlock_all

§ Flush_all – remotely	complete	RMA	operations	to	all	
processes

§ Flush_local_all – locally	complete	RMA	operations	to	all	
processes

74

MPI_Win_lock_all(int assert, MPI_Win win)

Advanced	MPI,	SC16	(11/14/2016)

MPI_Win_unlock_all(MPI_Win win)

MPI_Win_flush_all/flush_local_all(MPI_Win win)

NWChem [1]

§ High	performance	computational	chemistry	
application	suite

§ Quantum	level	simulation	of	molecular	
systems
– Very	expensive	 in	computation	and	data	

movement,	 so	is	used	for	small	systems
– Larger	 systems	use	molecular	level	 simulations

§ Composed	of	many	simulation	capabilities
– Molecular	Electronic	Structure
– Quantum	Mechanics/Molecular	 Mechanics
– Pseudo	potential	Plane-Wave	 Electronic	Structure
– Molecular	Dynamics

§ Very	large	code	base
– 4M	LOC;	Total	investment	 of	~200M	$	to	date

[1]	M.	Valiev,	E.J.	Bylaska,	N.	Govind,	K.	Kowalski,	T.P.	Straatsma,	H.J.J.	van	Dam,	D.	Wang,	J.	Nieplocha,	E.	Apra,	T.L.	Windus,	W.A.	de	Jong,	
"NWChem:	a	comprehensive	and	scalable	open-source	solution	for	large	scale	molecular	simulations"	Comput.	Phys.	Commun.	181,	
1477	(2010)

Water	 (H2O)21

Carbon	C20

Advanced	MPI,	SC16	(11/14/2016) 75

NWChem Communication Runtime

ARMCI		:	Communication	 interface	for	RMA[3]

Global	Arrays	[2]

[2]	http://hpc.pnl.gov/globalarrays
[3]	http://hpc.pnl.gov/armci

ARMCI	native	ports

IB DMMAP …

MPI RMA

ARMCI-MPI

Abstractions	for	distributed	arrays
Global	Address	Space

Physically	distributed	to	different	processes	

Hidden	from	user

Applications

Irregularly		access	large	amount	of	remote	
memory	regions

Advanced	MPI,	SC16	(11/14/2016) 76

Get-Compute-Update

§ Typical	Get-Compute-Update	mode	in	GA	programming

Perform	DGEMM	in	local	buffer	

for i in I blocks:
for j in J blocks:

for k in K blocks:
GET block a from A
GET block b from B
c += a * b /*computing*/

end do
ACC block c to C
NXTASK

end do
end do

Pseudo	code

ACCUMULATE
block	c

GET
block	b

GET	
block	a

All	of	the	blocks	are	non-contiguous	data

Mock	figure	showing	2D	DGEMM	with	block-sparse	
computations.		In	reality,	NWChem uses	6D	tensors.

Advanced	MPI,	SC16	(11/14/2016) 77

Code Example

§ ga_mpi_ddt_rma.c

§ Only	synchronization	from	origin	processes,	no	
synchronization	from	target	processes

78Advanced	MPI,	SC16	(11/14/2016)

Which synchronization mode should I use, when?

§ RMA	communication	has	low	overheads	versus	send/recv
– Two-sided:	Matching,	queuing,	buffering,	unexpected	receives,	etc…
– One-sided:	No	matching,	no	buffering,	always	ready	to	receive
– Utilize	RDMA	provided	by	high-speed	interconnects	(e.g.	InfiniBand)

§ Active	mode:	bulk	synchronization
– E.g.	ghost	cell	exchange

§ Passive	mode:	asynchronous	data	movement
– Useful	when	dataset	is	large,	requiring	memory	of	multiple	nodes
– Also,	when	data	access	and	synchronization	pattern	is	dynamic
– Common	use	case:	distributed,	shared	arrays

§ Passive	target	locking	mode
– Lock/unlock	– Useful	when	exclusive	epochs	are	needed
– Lock_all/unlock_all – Useful	when	only	shared	epochs	are	needed

79Advanced	MPI,	SC16	(11/14/2016)

MPI RMA Memory Model

§ MPI-3	provides	two	memory	models:	
separate	and	unified

§ MPI-2:	Separate	Model
– Logical	public	and	private	copies
– MPI	provides	software	coherence	between	

window	copies
– Extremely	portable,	to	systems	that	don’t	

provide	hardware	coherence

§ MPI-3:	New	Unified	Model
– Single	copy	of	the	window
– System	must	provide	coherence
– Superset	of	separate	semantics

• E.g.	allows	concurrent	 local/remote	access

– Provides	access	to	full	performance	
potential	of	hardware

80

Public
Copy

Private
Copy

Unified
Copy

Advanced	MPI,	SC16	(11/14/2016)

Separate Unified

MPI RMA Memory Model (separate windows)

§ Very	portable,	compatible	with	non-coherent	memory	systems
§ Limits	concurrent	accesses	to	enable	software	coherence

Public
Copy

Private
Copy

Same	source
Same	epoch Diff.	Sources

load store store

X

81

X

Advanced	MPI,	SC16	(11/14/2016)

MPI RMA Memory Model (unified windows)

§ Allows	concurrent	local/remote	accesses
§ Concurrent,	conflicting	operations	are	allowed	(not	invalid)

– Outcome	is	not	defined	by	MPI	(defined	by	the	hardware)

§ Can	enable	better	performance	by	reducing	synchronization

82

Unified
Copy

Same	source
Same	epoch Diff.	Sources

load store store

X

Advanced	MPI,	SC16	(11/14/2016)

MPI RMA Operation Compatibility (Separate)

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL X X

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL X NOVL NOVL NOVL

Acc NOVL X NOVL NOVL OVL+NOVL

This	matrix	shows	the	compatibility	 of	MPI-RMA	operations	when	two	or	more	
processes	 access	 a	window	at	the	same	 target	concurrently.

OVL	 – Overlapping	operations	permitted
NOVL	 – Nonoverlapping operations	permitted
X	 – Combining	 these	operations	 is	OK,	but	data	might	be	garbage

83Advanced	MPI,	SC16	(11/14/2016)

MPI RMA Operation Compatibility (Unified)

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL NOVL NOVL

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL NOVL NOVL NOVL NOVL

Acc NOVL NOVL NOVL NOVL OVL+NOVL

This	matrix	shows	the	compatibility	 of	MPI-RMA	operations	when	two	or	more	
processes	 access	 a	window	at	the	same	 target	concurrently.

OVL	 – Overlapping	operations	permitted
NOVL	 – Nonoverlapping operations	permitted

84Advanced	MPI,	SC16	(11/14/2016)

Hybrid Programming with Threads,
Shared Memory, and GPUs

Why Hybrid MPI + X Programming?

Core

Core Core

Core Core

Core Core

Core

Core

Core Core

Core Core

Core Core

Core

Growth	of	node	resources	in	the	Top500	systems.	Peter	Kogge:	“Reading	the	
Tea-Leaves:	How	Architecture	Has	Evolved	at	the	High	End”.	IPDPS	2014	Keynote

Domain	
Decomposition

§ Sharing	promotes	cooperation
– Reduced	memory	consumption

– Efficient	use	of	shared	 resources:	
caches,	TLB	entries,	 network	
endpoints,	 etc.

Advanced	MPI,	SC16	(11/14/2016) 86

MPI + Threads

87Advanced	MPI,	SC16	(11/14/2016)

MPI and Threads

§ MPI	describes	parallelism	between	
processes	(with	separate	address	spaces)

§ Thread parallelism	provides	a	shared-
memory	model	within	a	process

§ OpenMP and	Pthreads are	common	models
– OpenMP provides	convenient	 features	 for	loop-

level	parallelism.	Threads	 are	created	 and	
managed	by	the	compiler,	based	on	user	
directives.

– Pthreads provide	more	complex	and	dynamic	
approaches.	 Threads	 are	created	 and	managed	
explicitly	by	the	user.

Advanced	MPI,	SC16	(11/14/2016) 88

MPI	Process

COMP.

COMP.

MPI	COMM.

MPI	Process

COMP.

COMP.

MPI	COMM.

Hybrid Programming with MPI+Threads

§ In	MPI-only	programming,	
each	MPI	process	has	a	single	
thread	of	execution

§ In	MPI+threads hybrid	
programming,	there	can	be	
multiple	threads	executing	
simultaneously
– All	threads	 share	all	MPI	

objects	 (communicators,	
requests)

– The	MPI	implementation	might	
need	 to	take	precautions	 to	
make	sure	the	state	of	the	MPI	
stack	is	consistent

Advanced	MPI,	SC16	(11/14/2016)

Rank	0 Rank	1

MPI-only	Programming

Rank	0 Rank	1

MPI+Threads Hybrid	Programming

89

MPI’s Four Levels of Thread Safety

§ MPI	defines	four	levels	of	thread	safety	-- these	are	
commitments	the	application	makes	to	the	MPI
– MPI_THREAD_SINGLE:	 only	one	thread	exists	in	the	application
– MPI_THREAD_FUNNELED:	 multithreaded,	 but	only	the	main	thread	

makes	MPI	calls	(the	one	that	called	MPI_Init_thread)
– MPI_THREAD_SERIALIZED:	 multithreaded,	 but	only	one	thread	at	a	time

makes	MPI	calls

– MPI_THREAD_MULTIPLE:	 multithreaded	 and	any	thread	can	make	MPI	
calls	at	any	time	(with	some	restrictions	 to	avoid	races	– see	next	 slide)

§ Thread	levels	are	in	increasing	order
– If	an	application	works	in	FUNNELED	mode,	 it	can	work	in	SERIALIZED

§ MPI	defines	an	alternative	to	MPI_Init
– MPI_Init_thread(requested,	 provided)

• Application	 specifies	level	it	needs;	MPI	implementation	 returns	 level	it	supports

Advanced	MPI,	SC16	(11/14/2016) 90

MPI_THREAD_SINGLE

§ There	are	no	additional	user	threads	in	the	system
– E.g.,	there	are	no	OpenMP parallel	regions

Advanced	MPI,	SC16	(11/14/2016)

int main(int argc, char ** argv)
{

int buf[100];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for (i = 0; i < 100; i++)
compute(buf[i]);

/* Do MPI stuff */

MPI_Finalize();

return 0;
}

91

MPI	Process

COMP.

COMP.

MPI	COMM.

MPI_THREAD_FUNNELED

§ All	MPI	calls	are	made	by	the	master thread
– Outside	 the	OpenMP parallel	 regions

– In	OpenMP master	 regions

Advanced	MPI,	SC16	(11/14/2016)

int main(int argc, char ** argv)
{

int buf[100], provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &provided);
if (provided < MPI_THREAD_FUNNELED) MPI_Abort(MPI_COMM_WORLD,1);

#pragma omp parallel for
for (i = 0; i < 100; i++)

compute(buf[i]);

/* Do MPI stuff */

MPI_Finalize();
return 0;

}

92

MPI	Process

COMP.

COMP.

MPI	COMM.

MPI_THREAD_SERIALIZED

§ Only	one thread	can	make	MPI	calls	at	a	time
– Protected	 by	OpenMP critical	regions

Advanced	MPI,	SC16	(11/14/2016)

int main(int argc, char ** argv)
{

int buf[100], provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_SERIALIZED, &provided);
if (provided < MPI_THREAD_SERIALIZED) MPI_Abort(MPI_COMM_WORLD,1);

#pragma omp parallel for
for (i = 0; i < 100; i++) {

compute(buf[i]);
#pragma omp critical

/* Do MPI stuff */
}

MPI_Finalize();
return 0;

}

93

MPI	Process

COMP.

COMP.

MPI	COMM.

MPI_THREAD_MULTIPLE

§ Any thread	can	make	MPI	calls	any	time	(restrictions	apply)

Advanced	MPI,	SC16	(11/14/2016)

int main(int argc, char ** argv)
{

int buf[100], provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);
if (provided < MPI_THREAD_MULTIPLE) MPI_Abort(MPI_COMM_WORLD,1);

#pragma omp parallel for
for (i = 0; i < 100; i++) {

compute(buf[i]);
/* Do MPI stuff */

}

MPI_Finalize();
return 0;

}

94

MPI	Process

COMP.

COMP.

MPI	COMM.

Threads and MPI

§ An	implementation	is	not	required	to	support	levels	higher	
than	MPI_THREAD_SINGLE;	that	is,	an	implementation	is	not	
required	to	be	thread	safe

§ A	fully	thread-safe	implementation	will	support	
MPI_THREAD_MULTIPLE

§ A	program	that	calls	MPI_Init (instead	of	MPI_Init_thread)	
should	assume	that	only	MPI_THREAD_SINGLE	is	supported
– MPI	Standard	mandates MPI_THREAD_SINGLE	 for	MPI_Init

§ A	threaded	MPI	program	that	does	not	call	MPI_Init_thread is	
an	incorrect	program	(common	user	error	we	see)

Advanced	MPI,	SC16	(11/14/2016) 95

Implementing Stencil Computation using
MPI_THREAD_FUNNELED

96Advanced	MPI,	SC16	(11/14/2016)

Code Examples

§ stencil_mpi_ddt_funneled.c

§ Parallelize	computation	(OpenMPparallel	for)

§ Main	thread	does	all	communication

97Advanced	MPI,	SC16	(11/14/2016)

MPI Semantics and MPI_THREAD_MULTIPLE

§ Ordering:When	multiple	threads	make	MPI	calls	concurrently,	
the	outcome	will	be	as	if	the	calls	executed	sequentially	in	some	
(any)	order
– Ordering	 is	maintained	within	each	thread
– User	must	ensure	 that	collective	 operations	on	the	same	communicator,	

window,	or	file	handle	are	correctly	ordered	 among	threads
• E.g.,	cannot	call	a	broadcast	on	one	thread	and	a	reduce	on	another	thread	on	
the	same	communicator

– It	is	the	user's	responsibility	 to	prevent	 races	when	threads	 in	the	same	
application	post	conflicting	MPI	calls	

• E.g.,	accessing	 an	info	object	from	one	thread	and	freeing	 it	from	another	
thread

§ Progress: Blocking	MPI	calls	will	block	only	the	calling	thread	and	
will	not	prevent	other	threads	from	running	or	executing	MPI	
functions

Advanced	MPI,	SC16	(11/14/2016) 98

Ordering in MPI_THREAD_MULTIPLE: Incorrect
Example with Collectives

Process 0

MPI_Bcast(comm)

MPI_Barrier(comm)

Process 1

MPI_Bcast(comm)

MPI_Barrier(comm)

Advanced	MPI,	SC16	(11/14/2016) 99

Thread	0

Thread	1

Ordering in MPI_THREAD_MULTIPLE: Incorrect
Example with Collectives

§ P0	and	P1	can	have	different	orderings	of	Bcast and	Barrier
§ Here	the	user	must	use	some	kind	of	synchronization	to	

ensure	that	either	thread	1	or	thread	2	gets	scheduled	first	on	
both	processes	

§ Otherwise	a	broadcast	may	get	matched	with	a	barrier	on	the	
same	communicator,	which	is	not	allowed	in	MPI

Process 0
Thread 1 Thread 2

MPI_Bcast(comm)

MPI_Barrier(comm)

Advanced	MPI,	SC16	(11/14/2016) 100

Process 1
Thread 1 Thread 2

MPI_Barrier(comm)

MPI_Bcast(comm)

Ordering in MPI_THREAD_MULTIPLE: Incorrect
Example with RMA

Advanced	MPI,	SC16	(11/14/2016) 101

int main(int argc, char ** argv)
{

/* Initialize MPI and RMA window */

#pragma omp parallel for
for (i = 0; i < 100; i++) {

target = rand();
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, target, 0, win);
MPI_Put(..., win);
MPI_Win_unlock(target, win);

}

/* Free MPI and RMA window */

return 0;
}

Different	threads	can	lock	the	same	process	causing	multiple	
locks	to	the	same	target	before	the	first	lock	is	unlocked

Ordering in MPI_THREAD_MULTIPLE: Incorrect
Example with Object Management

§ The	user	has	to	make	sure	that	one	thread	is	not	using	an	
object	while	another	thread	is	freeing	it
– This	is	essentially	an	ordering	 issue;	the	object	might	get	freed	 before	

it	is	used

Advanced	MPI,	SC16	(11/14/2016) 102

Process 0
Thread 1 Thread 2

MPI_Comm_free(comm)

MPI_Bcast(comm)

Blocking Calls in MPI_THREAD_MULTIPLE: Correct
Example

§ An	implementation	must	ensure	that	the	above	example	
never	deadlocks	for	any	ordering	of	thread	execution

§ That	means	the	implementation	cannot	simply	acquire	a	
thread	lock	and	block	within	an	MPI	function.	It	must	
release	the	lock	to	allow	other	threads	to	make	progress.

Process 0

MPI_Recv(src=1)

MPI_Send(dst=1)

Process 1

MPI_Recv(src=0)

MPI_Send(dst=0)

Thread 1

Thread 2

Advanced	MPI,	SC16	(11/14/2016) 103

Implementing Stencil Computation using
MPI_THREAD_MULTIPLE

104Advanced	MPI,	SC16	(11/14/2016)

Code Examples

§ stencil_mpi_ddt_multiple.c

§ Divide	the	process	memory	among	OpenMP threads

§ Each	thread	responsible	for	communication	and	computation

105Advanced	MPI,	SC16	(11/14/2016)

The Current Situation

§ All	MPI	implementations	support	MPI_THREAD_SINGLE

§ They	probably	support	MPI_THREAD_FUNNELED	even	if	they	
don’t	admit	it.
– Does	require	 thread-safety	 for	some	system	routines	 (e.g.	malloc)

– On	most	systems	 -pthread will	guarantee	 it	(OpenMP implies

-pthread)

§ Many	(but	not	all)	implementations	support	THREAD_MULTIPLE
– Hard	to	implement	efficiently	 though	(thread	synchronization	 issues)

§ Bulk-synchronous	OpenMPprograms	(loops	parallelized	with	
OpenMP,	communication	between	loops)	only	need	FUNNELED
– So	don’t	need	“thread-safe”	 MPI	for	many	hybrid	programs

– But	watch	out	for	Amdahl’s	 Law!

Advanced	MPI,	SC16	(11/14/2016) 106

Performance with MPI_THREAD_MULTIPLE

§ Thread	safety	does	not	come	for	free

§ The	implementation	must	access/modify	several	shared	
objects	(e.g.	message	queues)	in	a	consistent	manner

§ To	measure	the	performance	impact,	we	ran	tests	to	measure	
communication	performance	when	using	multiple	threads	
versus	multiple	processes
– For	results,	 see	Thakur/Gropp paper:	“Test	Suite	for	Evaluating	

Performance	 of	Multithreaded	 MPI	Communication,”	 Parallel	
Computing,	2009

Advanced	MPI,	SC16	(11/14/2016) 107

Message Rate Results on BG/P

Message	 Rate	Benchmark

Advanced	MPI,	SC16	(11/14/2016) 108

“Enabling	Concurrent	Multithreaded	MPI	
Communication	on	Multicore Petascale
Systems”	EuroMPI 2010

Why is it hard to optimize MPI_THREAD_MULTIPLE

§ MPI	internally	maintains	several	resources

§ Because	of	MPI	semantics,	it	is	required	that	all	
threads	have	access	to	some	of	the	data	structures
– E.g.,	thread	1	can	post	an	Irecv,	and	thread	2	can	wait	
for	its	completion	– thus	the	request	queue	has	to	be	
shared	between	both	threads

– Since	multiple	threads	are	accessing	this	shared	queue,	
thread-safety	is	required	to	ensure	a	consistent	state	of	
the	queue	– adds	a	lot	of	overhead

Advanced	MPI,	SC16	(11/14/2016) 109

Hybrid Programming: Correctness Requirements

§ Hybrid	programming	with	MPI+threads does	not	do	much	to	
reduce	the	complexity	of	thread	programming
– Your	application	still	has	to	be	a	correct	multi-threaded	 application

– On	top	of	that,	you	also	need	 to	make	sure	you	are	correctly	 following	
MPI	semantics

§ Many	commercial	debuggers	offer	support	for	debugging	
hybrid	MPI+threads applications	(mostly	for	MPI+Pthreads
and	MPI+OpenMP)

Advanced	MPI,	SC16	(11/14/2016) 110

An Example we encountered

§ We	received	a	bug	report	about	a	very	simple	
multithreaded	MPI	program	that	hangs

§ Run	with	2	processes

§ Each	process	has	2	threads

§ Both	threads	communicate	with	threads	on	the	other	
process	as	shown	in	the	next	slide

§ We	spent	several	hours	trying	to	debug	MPICH	before	
discovering	that	the	bug	is	actually	in	the	user’s	program	L

Advanced	MPI,	SC16	(11/14/2016) 111

2 Proceses, 2 Threads, Each Thread Executes this
Code

for	(j	=	0;	j	<	2;	j++)	{

if	(rank	==	1)	{

for	(i	=	0;	i	<	2;	i++)

MPI_Send(NULL,	 0,	MPI_CHAR,	0,	0,	MPI_COMM_WORLD);

for	(i	=	0;	i	<	2;	i++)

MPI_Recv(NULL,	 0,	MPI_CHAR,	0,	0,	MPI_COMM_WORLD,	&stat);

}

else	{		/*	rank	==	0	*/

for	(i	=	0;	i	<	2;	i++)

MPI_Recv(NULL,	 0,	MPI_CHAR,	1,	0,	MPI_COMM_WORLD,	&stat);

for	(i	=	0;	i	<	2;	i++)

MPI_Send(NULL,	 0,	MPI_CHAR,	1,	0,	MPI_COMM_WORLD);

}

}
Advanced	MPI,	SC16	(11/14/2016) 112

Intended Ordering of Operations

§ Every	send	matches	a	receive	on	the	other	rank

Advanced	MPI,	SC16	(11/14/2016)

2	recvs (T2)
2 sends	(T2)
2 recvs (T2)
2 sends	(T2)

2	recvs (T1)
2 sends	(T1)
2 recvs (T1)
2 sends	(T1)

Rank	0

2	sends	(T2)
2	recvs (T2)
2	sends	(T2)
2	recvs (T2)

2	sends	(T1)
2	recvs (T1)
2	sends	(T1)
2	recvs (T1)

Rank	1

113

Possible Ordering of Operations in Practice

§ Because	the	MPI	operations	can	be	issued	in	an	arbitrary	
order	across	threads,	all	threads	could	block	in	a	RECV	call

1 recv (T2)

1	recv (T2)

2	sends	(T2)
2 recvs (T2)
2 sends	(T2)

2	recvs (T1)
2 sends	(T1)
1 recv (T1)

1	recv (T1)

2	sends	(T1)

Rank	0

2	sends	(T2)
1 recv (T2)

1	recv (T2)

2	sends	(T2)
2	recvs (T2)

2	sends	(T1)
1 recv (T1)

1	recv (T1)

2	sends	(T1)
2	recvs (T1)

Rank	1

114Advanced	MPI,	SC16	(11/14/2016)

Some Things to Watch for in OpenMP

§ Limited	thread	and	no	explicit	memory	affinity	control	(but	
see	OpenMP	4.0	and	the	4.1	Draft)
– “First	touch”	(have	 intended	“owning”	thread	perform	 first	access)	

provides	 initial	static	mapping	of	memory
• Next	touch	(move	ownership	to	most	recent	thread)	could	help

– No	portable	way	to	reassign	memory	affinity	– reduces	 the	
effectiveness	 of	OpenMP	when	used	to	improve	 load	balancing.

§ Memory	model	can	require	explicit	“memory	flush”	
operations
– Defaults	allow	race	conditions

– Humans	notoriously	poor	at	recognizing	 all	races
• It	only	takes	one	mistake	to	create	a	hard-to-find	bug

Advanced	MPI,	SC16	(11/14/2016) 115

Some Things to Watch for in MPI + OpenMP

§ No	interface	for	apportioning	resources	between	MPI	and	
OpenMP
– On	an	SMP	node,	how	many	MPI	processes	 and	how	many	OpenMP	

Threads?
• Note	the	static	nature	assumed	 by	this	question

– Note	that	having	more	threads	 than	cores	can	be	important	 for	hiding	
latency
• Requires	 very	lightweight	 threads

§ Competition	for	resources
– Particularly	memory	bandwidth	and	network	access

– Apportionment	 of	network	access	between	 threads	 and	processes	 is	
also	a	problem,	as	we’ve	 already	seen.

Advanced	MPI,	SC16	(11/14/2016) 116

Where Does the MPI + OpenMP Hybrid Model Work
Well?

§ Compute-bound	loops
– Many	operations	 per	memory	load

§ Fine-grain	parallelism
– Algorithms	 that	are	latency-sensitive

§ Load	balancing
– Similar	to	fine-grain	parallelism;	ease	of	

§ Memory	bound	loops

Advanced	MPI,	SC16	(11/14/2016) 117

Compute-Bound Loops

§ Loops	that	involve	many	operations	per	load	from	memory	
– This	can	happen	 in	some	kinds	of	matrix	assembly,	 for	example.

– Jacobi	update	not	compute	bound

Advanced	MPI,	SC16	(11/14/2016) 118

Fine-Grain Parallelism

§ Algorithms	that	require	frequent	exchanges	of	small	amounts	
of	data

§ E.g.,	in	blocked	preconditioners,	where	fewer,	larger	blocks,	
each	managed	with	OpenMP,	as	opposed	to	more,	smaller,	
single-threaded	blocks	in	the	all-MPI	version,	gives	you	an	
algorithmic	advantage	(e.g.,	fewer	iterations	in	a	
preconditioned	linear	solution	algorithm).

§ Even	if	memory	bound

Advanced	MPI,	SC16	(11/14/2016) 119

Load Balancing

§ Where	the	computational	load	isn't	exactly	the	same	in	all	
threads/processes;	this	can	be	viewed	as	a	variation	on	fine-
grained	access.

§ OpenMP	schedules	can	handle	some	of	this
– For	very	 fine	grain	cases,	a	mix	of	static	and	dynamic	scheduling	may	

be	more	efficient

– Current	 research	 looking	at	more	elaborate	and	efficient	 schedules	 for	
this	case

Advanced	MPI,	SC16	(11/14/2016) 120

Memory-Bound Loops

§ Where	read	data	is	shared,	so	that	cache	memory	can	be	
used	more	efficiently.

§ Example:	Table	lookup	for	evaluating	equations	of	state
– Table	can	be	shared

– If	table	evaluated	 as	necessary,	 evaluations	 can	be	shared	 			

Advanced	MPI,	SC16	(11/14/2016) 121

Where is Pure MPI Better?

§ Trying	to	use	OpenMP	+	MPI	on	very	regular,	memory-
bandwidth-bound	computations	is	likely	to	lose	because	of	
the	better,	programmer-enforced	memory	locality	
management	in	the	pure	MPI	version.

§ Another	reason	to	use	more	than	one	MPI	process	- if	a	single	
process	(or	thread)	can't	saturate	the	interconnect	- then	use	
multiple	communicating	processes	or	threads.
– Note	that	threads	 and	processes	 are	not	equal

Advanced	MPI,	SC16	(11/14/2016) 122

MPI + Shared-Memory

123Advanced	MPI,	SC16	(11/14/2016)

Hybrid Programming with Shared Memory

§ MPI-3	allows	different	processes	to	allocate	shared	memory	
through	MPI
– MPI_Win_allocate_shared

§ Uses	many	of	the	concepts	of	one-sided	communication

§ Applications	can	do	hybrid	programming	using	MPI	or	
load/store	accesses	on	the	shared	memory	window

§ Other	MPI	functions	can	be	used	to	synchronize	access	to	
shared	memory	regions

§ Can	be	simpler	to	program	than	threads

Advanced	MPI,	SC16	(11/14/2016) 124

Creating Shared Memory Regions in MPI

Advanced	MPI,	SC16	(11/14/2016)

MPI_COMM_WORLD

MPI_Comm_split_type (MPI_COMM_TYPE_SHARED)

Shared	memory	
communicator

MPI_Win_allocate_shared

Shared	memory	
window

Shared	memory	
window

Shared	memory	
window

Shared	memory	
communicator

Shared	memory	
communicator

125

Load/store

Regular RMA windows vs. Shared memory windows

§ Shared	memory	windows	allow	
application	processes	 to	directly	
perform	 load/store	accesses	 on	
all	of	the	window	memory
– E.g.,	x[100]	=	10

§ All	of	the	existing	RMA	functions	
can	also	be	used	on	such	
memory	for	more	advanced	
semantics	 such	as	atomic	
operations

§ Can	be	very	useful	when	
processes	 want	to	use	threads	
only	to	get	access	 to	all	of	the	
memory	on	the	node
– You	can	create	 a	shared	memory	

window	and	put	your	shared	data

Advanced	MPI,	SC16	(11/14/2016)

Local	
memory

P0

Local	
memory

P1

Load/store
PUT/GET

Traditional	RMA	windows

Load/store

Local	memory

P0 P1

Load/store

Shared	memory	windows

Load/store

126

MPI_COMM_SPLIT_TYPE

§ Create	a	communicator	where	processes	“share	a	property”
– Properties	 are	defined	by	the	“split_type”

§ Arguments:
– comm - input	communicator	 (handle)

– Split_type - property	of	the	partitioning	 (integer)

– Key - Rank	assignment	ordering	 (nonnegative	 integer)

– info - info	argument	 (handle)

– newcomm- output	communicator	 (handle)

127Advanced	MPI,	SC16	(11/14/2016)

MPI_Comm_split_type(MPI_Comm comm, int split_type,
int key, MPI_Info info, MPI_Comm *newcomm)

MPI_WIN_ALLOCATE_SHARED

§ Create	a	remotely	accessible	memory	region	in	an	RMA	window
– Data	exposed	 in	a	window	can	be	accessed	with	RMA	ops	or	load/store

§ Arguments:
– size - size	of	local	data	in	bytes	(nonnegative	 integer)

– disp_unit - local	unit	size	for	displacements,	 in	bytes	(positive	 integer)

– info - info	argument	 (handle)

– comm - communicator	 (handle)

– baseptr - pointer	 to	exposed	 local	data

– win												- window	(handle)

128Advanced	MPI,	SC16	(11/14/2016)

MPI_Win_allocate_shared(MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, void *baseptr,
MPI_Win *win)

Shared Arrays with Shared memory windows

Advanced	MPI,	SC16	(11/14/2016)

int main(int argc, char ** argv)
{

int buf[100];

MPI_Init(&argc, &argv);
MPI_Comm_split_type(..., MPI_COMM_TYPE_SHARED, .., &comm);
MPI_Win_allocate_shared(comm, ..., &win);

MPI_Win_lockall(win);

/* copy data to local part of shared memory */
MPI_Win_sync(win);

/* use shared memory */

MPI_Win_unlock_all(win);

MPI_Win_free(&win);
MPI_Finalize();
return 0;

}

129

Memory allocation and placement

§ Shared	memory	allocation	does	not	need	to	be	uniform	
across	processes
– Processes	 can	allocate	a	different	 amount	of	memory	(even	zero)

§ The	MPI	standard	does	not	specify	where	the	memory	would	
be	placed	(e.g.,	which	physical	memory	it	will	be	pinned	to)
– Implementations	 can	choose	 their	own	strategies,	 though	it	is	

expected	 that	an	implementation	will	try	to	place	shared	memory	
allocated	by	a	process	“close	to	it”

§ The	total	allocated	shared	memory	on	a	communicator	is	
contiguous	by	default
– Users	 can	pass	an	info	hint	called	“noncontig”	that	will	allow	the	MPI	

implementation	 to	align	memory	allocations	 from	each	process	 to	
appropriate	 boundaries	 to	assist	with	placement

Advanced	MPI,	SC16	(11/14/2016) 130

Example Computation: Stencil

Advanced	MPI,	SC16	(11/14/2016)

Message	 passing	model	
requires	ghost-cells	to	be	
explicitly	communicated	
to	neighbor	processes

In	the	shared-memory	
model,	there	is	no	
communication.		

Neighbors	directly	access	
your	data.

131

Walkthrough of 2D Stencil Code with Shared
Memory Windows

§ stencil_mpi_shmem.c

Advanced	MPI,	SC16	(11/14/2016) 132

Which Hybrid Programming Method to Adopt?

§ It	depends	on	the	application,	target	machine,	and	MPI	
implementation

§ When	should	I	use	process	shared	memory?
– The	only	resource	 that	needs	sharing	is	memory

– Few	allocated	objects	need	sharing	(easy	 to	place	them	in	a	public	shared	
region)

§ When	should	I	use	threads?
– More	 than	memory	resources	 need	sharing	(e.g.,	TLB)

– Many	application	objects	 require	sharing

– Application	computation	structure	 can	be	easily	parallelized	with	high-
level	OpenMP loops

Advanced	MPI,	SC16	(11/14/2016) 133

Example: Quantum Monte Carlo

W
Walker	data

§ Memory	capacity	bound	with	MPI-only
§ Hybrid	approaches

– MPI	+	threads	 (e.g.	X	=	OpenMP,	Pthreads)
– MPI	+	shared-memory	 (X		=	MPI)

§ Can	use	direct	load/store	operations	
instead	of	message	passing

Large	B-spline	table

W W W W

Thread	0 Thread	1

MPI	Task	1

Core Core

MPI	+	Threads
• Share	everything	by	default
• Privatize	data	when	necessary

MPI	+	Shared-Memory	(MPI	3.0)
• Everything	private	by	default
• Expose	shared	data	explicitly

MPI	Task	1MPI	Task	0

Large	B-spline	table	in	a	Share-Memory	
Window

W

Core

W

Core

WW

Advanced	MPI,	SC16	(11/14/2016) 134

MPI + Accelerators

135Advanced	MPI,	SC16	(11/14/2016)

Accelerators in Parallel Computing

§ General	purpose,	highly	parallel	processors
– High	FLOPs/Watt	and	FLOPs/$

– Unit	of	execution	Kernel
– Separate	memory	subsystem
– Programming	Models:	CUDA,	OpenCL,	…

§ Clusters	with	accelerators	are	becoming	common
§ New	programmability	and	performance	challenges	for	

programming	models	and	runtime	systems

Advanced	MPI,	SC16	(11/14/2016) 136

Hybrid Programming with Accelerators

§ Many	users	are	looking	to	use	accelerators	within	their	MPI	
applications

§ The	MPI	standard	does	not	provide	any	special	semantics	to	
interact	with	accelerators
– Current	MPI	threading	semantics	are	considered	 sufficient	 by	most	

users

– There	are	some	research	 efforts	 for	making	accelerator	 memory	
directly	accessibly	by	MPI,	but	those	are	not	a	part	of	the	MPI	standard

Advanced	MPI,	SC16	(11/14/2016) 137

Current Model for MPI+Accelerator Applications

Advanced	MPI,	SC16	(11/14/2016) 138

GPU
P0

GPU

GPU

P2
GPU

P3

P1

Alternate MPI+Accelerator models being studied

§ Some	MPI	implementations	(MPICH,	Open	MPI,	MVAPICH)	
are	investigating	how	the	MPI	implementation	can	directly	
send/receive	data	from	accelerators
– Unified	virtual	address	 (UVA)	 space	techniques	where	all	memory	

(including	accelerator	 memory)	is	represented	 with	a	“void	*”

– Communicator	and	datatype attribute	models	where	users	 can	inform	
the	MPI	implementation	of	where	 the	data	resides

§ Clear	performance	advantages	demonstrated	in	research	
papers,	but	these	features	are	not	yet	a	part	of	the	MPI	
standard	(as	of	MPI-3.1)
– Could	be	incorporated	 in	a	future	version	of	the	standard

Advanced	MPI,	SC16	(11/14/2016) 139

Advanced Topics: Nonblocking Collectives,
Topologies, and Neighborhood Collectives

§ Nonblocking	(send/recv)	communication
– Deadlock	avoidance

– Overlapping	 communication/computation

§ Collective	communication
– Collection	of	pre-defined	 optimized	routines

§ à Nonblocking	collective	communication
– Combines	both	techniques	 (more	than	the	sum	of	the	parts	J)

– System	noise/imbalance	 resiliency

– Semantic	advantages

141Advanced	MPI,	SC16	(11/14/2016)

Nonblocking Collective Communication

Nonblocking Collective Communication

§ Nonblocking	variants	of	all	collectives
– MPI_Ibcast(<bcast args>,	MPI_Request *req);

§ Semantics
– Function	returns	no	matter	what
– No	guaranteed	progress	(quality	of	implementation)
– Usual	completion	calls	(wait,	test)	+	mixing
– Out-of	order	completion

§ Restrictions
– No	tags,	in-order	matching
– Send	and	vector	buffers	may	not	be	updated	during	operation
– MPI_Cancel not	supported
– No	matching	with	blocking	collectives

Hoefler	et	al.:	Implementation	and	Performance	Analysis	of	Non-Blocking	Collective	Operations	for	MPI
142Advanced	MPI,	SC16	(11/14/2016)

Nonblocking Collective Communication

§ Semantic	advantages
– Enable	asynchronous	progression	 (and	manual)

• Software	pipelining

– Decouple	data	transfer	 and	synchronization

• Noise	 resiliency!

– Allow	overlapping	communicators
• See	also	neighborhood	 collectives

– Multiple	outstanding	operations	 at	any	time
• Enables	 pipelining	window

Hoefler	et	al.:	Implementation	and	Performance	Analysis	of	Non-Blocking	Collective	Operations	for	MPI
143Advanced	MPI,	SC16	(11/14/2016)

Nonblocking Collectives Overlap

§ Software	pipelining
– More	complex	parameters	

– Progression	 issues

– Not	scale-invariant

Hoefler:	Leveraging	Non-blocking	Collective	Communication	in	High-performance	Applications
144Advanced	MPI,	SC16	(11/14/2016)

A Non-Blocking Barrier?

§ What	can	that	be	good	for?	Well,	quite	a	bit!

§ Semantics:
– MPI_Ibarrier()	 – calling	process	 entered	 the	barrier,	no

synchronization	 happens

– Synchronization	may happen	asynchronously

– MPI_Test/Wait()	 – synchronization	 happens if	necessary

§ Uses:	
– Overlap	barrier	 latency	(small	benefit)

– Use	 the	split	semantics!	Processes	 notify non-collectively	 but	
synchronize collectively!

145Advanced	MPI,	SC16	(11/14/2016)

A Semantics Example: DSDE

§ Dynamic	Sparse	Data	Exchange
– Dynamic:	comm.	pattern	varies	across	 iterations
– Sparse:	number	of	neighbors	 is	limited	(O(log	P))
– Data	exchange:	only	senders	 know	neighbors

§ Main	Problem:	metadata
– Determine	who	wants	 to	send	how	much

data	to	me	
(I	must	post	receive	 and	reserve	 memory)
OR:
– Use	MPI	semantics:

• Unknown	sender	(MPI_ANY_SOURCE)
• Unknown	message	 size	(MPI_PROBE)
• Reduces	 problem	to	counting	the	number
of	neighbors	

• Allow	faster	 implementation!
Hoefler	et	al.:	Scalable	Communication	Protocols	for	Dynamic	Sparse	Data	Exchange

146Advanced	MPI,	SC16	(11/14/2016)

Using Alltoall (PEX)

§ Based	on	Personalized	Exchange	()
– Processes	 exchange

metadata	 (sizes)	
about	neighborhoods	
with	all-to-all

– Processes	 post	
receives	 afterwards

– Most	intuitive	but	
least	performance	
and	scalability!

T.	Hoefler	et	al.:	Scalable	Communication	Protocols	for	Dynamic	Sparse	Data	Exchange
147Advanced	MPI,	SC16	(11/14/2016)

Reduce_scatter (PCX)

§ Bases	on	Personalized	Census	()
– Processes	exchange

metadata	(counts)	about	
neighborhoods	with
reduce_scatter

– Receivers	checks	with
wildcard	MPI_IPROBE
and	receives	messages

– Better	than	PEX	but
non-deterministic!

T.	Hoefler	et	al.:Scalable Communication	Protocols	for	Dynamic	Sparse	Data	Exchange
148Advanced	MPI,	SC16	(11/14/2016)

MPI_Ibarrier (NBX)

§ Complexity	- census	(barrier):			()
– Combines	metadata	with	actual	transmission
– Point-to-point

synchronization
– Continue	receiving

until	barrier	completes
– Processes	start	coll.

synch.	(barrier)	when
p2p	phase	ended
• barrier	=	distributed	

marker!

– Better	than	Alltoall,
reduce-scatter!

T.	Hoefler	et	al.:	Scalable	Communication	Protocols	for	Dynamic	Sparse	Data	Exchange
149Advanced	MPI,	SC16	(11/14/2016)

Parallel Breadth First Search

§ On	a	clustered	Erdős-Rényi graph,	weak	scaling
– 6.75	million	edges	per	node	(filled	1	GiB)

§ HW	barrier	support	is	significant	at	large	scale!

BlueGene/P	 – with	HW	barrier! Myrinet 2000	with	LibNBC

T.	Hoefler	et	al.:	Scalable	Communication	Protocols	for	Dynamic	Sparse	Data	Exchange
150Advanced	MPI,	SC16	(11/14/2016)

Parallel Fast Fourier Transform

§ 1D	FFTs	in	all	three	dimensions
– Assume	1D	decomposition	 (each	process	 holds	a	set	of	planes)

– Best	way:	call	optimized	1D	FFTs	in	parallel	à alltoall

– Red/yellow/green	 are	the	(three)	 different	 processes!

à Alltoall

151Advanced	MPI,	SC16	(11/14/2016)

A Complex Example: FFT

for(int x=0; x<n/p; ++x) 1d_fft(/* x-th stencil */);

// pack data for alltoall
MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);
// unpack data from alltoall and transpose

for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);

// pack data for alltoall
MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);
// unpack data from alltoall and transpose

Hoefler:	Leveraging	Non-blocking	Collective	Communication	in	High-performance	Applications
152Advanced	MPI,	SC16	(11/14/2016)

Parallel Fast Fourier Transform

§ Data	already	transformed	in	y-direction	

153Advanced	MPI,	SC16	(11/14/2016)

Parallel Fast Fourier Transform

§ Transform	first	y plane	in	z

154Advanced	MPI,	SC16	(11/14/2016)

Parallel Fast Fourier Transform

§ Start	ialltoall and	transform	second	plane

155Advanced	MPI,	SC16	(11/14/2016)

Parallel Fast Fourier Transform

§ Start	ialltoall (second	plane)	and	transform	third

156Advanced	MPI,	SC16	(11/14/2016)

Parallel Fast Fourier Transform

§ Start	ialltoall of	third	plane	and	…

157Advanced	MPI,	SC16	(11/14/2016)

Parallel Fast Fourier Transform

§ Finish	ialltoall of	first	plane,	start	x transform

158Advanced	MPI,	SC16	(11/14/2016)

Parallel Fast Fourier Transform

§ Finish	second	ialltoall,	transform	second	plane

159Advanced	MPI,	SC16	(11/14/2016)

Parallel Fast Fourier Transform

§ Transform	last	plane	→	done

160Advanced	MPI,	SC16	(11/14/2016)

FFT Software Pipelining

Advanced	MPI,	SC16	(11/14/2016) 161

MPI_Request req[nb];
for(int b=0; b<nb; ++b) { // loop over blocks

for(int x=b*n/p/nb; x<(b+1)n/p/nb; ++x) 1d_fft(/* x-th stencil*/);

// pack b-th block of data for alltoall
MPI_Ialltoall(&in, n/p*n/p/bs, cplx_t, &out, n/p*n/p, cplx_t, comm, &req[b]);

}
MPI_Waitall(nb, req, MPI_STATUSES_IGNORE);

// modified unpack data from alltoall and transpose
for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);
// pack data for alltoall
MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);
// unpack data from alltoall and transpose

Hoefler:	Leveraging	Non-blocking	Collective	Communication	in	High-performance	Applications

Nonblocking Collectives Summary

§ Nonblocking communication	does	two	things:
– Overlap	and	relax	synchronization

§ Collective	communication	does	one	thing
– Specialized	pre-optimized	 routines	

– Performance	 portability

– Hopefully	 transparent	 performance

§ They	can	be	composed
– E.g.,	software	 pipelining

162Advanced	MPI,	SC16	(11/14/2016)

Topologies and Topology Mapping

Advanced	MPI,	SC16	(11/14/2016) 163

Topology Mapping and Neighborhood Collectives

§ Topology	mapping	basics
– Allocation	mapping	vs.	rank	reordering

– Ad-hoc	solutions	vs.	portability

§ MPI	topologies
– Cartesian

– Distributed	 graph

§ Collectives	on	topologies	– neighborhood	collectives
– Use	cases

164Advanced	MPI,	SC16	(11/14/2016)

Topology Mapping Basics

§ MPI	supports	rank	reordering	
– Change	numbering	 in	a	given	allocation	to	reduce	congestion	or	

dilation

– Sometimes	automatic	 (early	IBM	SP	machines)

§ Properties
– Always	possible,	but	effect	may	be	limited	(e.g.,	 in	a	bad	allocation)

– Portable	way:	MPI	process	 topologies
• Network	topology	 is	not	exposed

– Manual	data	shuffling	after	 remapping	step

165Advanced	MPI,	SC16	(11/14/2016)

Example: On-Node Reordering

Naïve	Mapping Optimized	Mapping

Topomap

Gottschling et	al.:	Productive	Parallel	Linear	Algebra	Programming	with	Unstructured	Topology	Adaption
166Advanced	MPI,	SC16	(11/14/2016)

Off-Node (Network) Reordering

Application	 Topology Network	Topology

Naïve	Mapping Optimal	Mapping

Topomap

167Advanced	MPI,	SC16	(11/14/2016)

MPI Topology Intro

§ Convenience	functions	(in	MPI-1)
– Create	 a	graph	and	query	it,	nothing	else

– Useful	especially	 for	Cartesian	 topologies
• Query	neighbors	 in	n-dimensional	 space

– Graph	 topology:	each	rank	specifies	 full	graph	L

§ Scalable	Graph	topology	(MPI-2.2)
– Graph	 topology:	each	rank	specifies	 its	neighbors	or an	arbitrary	

subset	of	the	graph

§ Neighborhood	collectives	(MPI-3.0)
– Adding	communication	 functions	defined	on	graph	topologies	

(neighborhood	 of	distance	one)

168Advanced	MPI,	SC16	(11/14/2016)

MPI_Cart_create

§ Specify	ndims-dimensional	topology
– Optionally	periodic	in	each	dimension	 (Torus)

§ Some	processes	may	return	MPI_COMM_NULL
– Product	sum	of	dims	must	be	<=	P

§ Reorder	argument	allows	for	topology	mapping
– Each	calling	process	may	have	a	new	rank	in	the	created	communicator

– Data	has	to	be	remapped	manually

169Advanced	MPI,	SC16	(11/14/2016)

MPI_Cart_create(MPI_Comm comm_old, int ndims, const int *dims,
const int *periods, int reorder, MPI_Comm *comm_cart)

MPI_Cart_create Example

§ Creates	logical	3D	Torus	of	size	5	x	5	x	5

§ But	we’re	starting	MPI	processes	with	a	one-dimensional	
argument	(-p	X)
– User	has	to	determine	 size	of	each	dimension

– Often	as	“square”	as	possible,	MPI	can	help!

170Advanced	MPI,	SC16	(11/14/2016)

int dims[3] = {5,5,5};
int periods[3] = {1,1,1};
MPI_Comm topocomm;
MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);

MPI_Dims_create

§ Create	dims	array	for	Cart_create with	nnodes and	ndims
– Dimensions	are	as	close	as	possible	 (well,	in	theory)

§ Non-zero	entries	in	dims	will	not	be	changed
– nnodes must	be	multiple	of	all	non-zeroes

171Advanced	MPI,	SC16	(11/14/2016)

MPI_Dims_create(int nnodes, int ndims, int *dims)

MPI_Dims_create Example

§ Makes	life	a	little	bit	easier
– Some	problems	may	be	better	 with	a	non-square	 layout	though

172Advanced	MPI,	SC16	(11/14/2016)

int p;
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Dims_create(p, 3, dims);

int periods[3] = {1,1,1};
MPI_Comm topocomm;
MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);

Cartesian Query Functions

§ Library	support	and	convenience!

§ MPI_Cartdim_get()
– Gets	dimensions	of	a	Cartesian	communicator

§ MPI_Cart_get()
– Gets	 size	of	dimensions

§ MPI_Cart_rank()
– Translate	 coordinates	 to	rank

§ MPI_Cart_coords()
– Translate	 rank	to	coordinates

173Advanced	MPI,	SC16	(11/14/2016)

Cartesian Communication Helpers

§ Shift	in	one	dimension
– Dimensions	are	numbered	 from	0	to	ndims-1

– Displacement	 indicates	neighbor	distance	(-1,	1,	…)

– May	return	MPI_PROC_NULL

§ Very	convenient,	all	you	need	for	nearest	neighbor	
communication
– No	“over	 the	edge”	though

174Advanced	MPI,	SC16	(11/14/2016)

MPI_Cart_shift(MPI_Comm comm, int direction, int disp,
int *rank_source, int *rank_dest)

Code Example

§ stencil-mpi-carttopo.c

§ Adds	calculation	of	neighbors	with	topology

Advanced	MPI,	SC16	(11/14/2016) 175

bx

by

MPI_Graph_create(MPI_Comm comm_old, int nnodes,
const int *index, const int *edges, int reorder,
MPI_Comm *comm_graph)

MPI_Graph_create

§ Don’t	use!!!!!

§ nnodes is	the	total	number	of	nodes

§ index	i stores	the	total	number	of	neighbors	for	the	first	i
nodes	(sum)
– Acts	as	offset	 into	edges	array

§ edges	stores	the	edge	list	for	all	processes
– Edge	list	for	process	 j	starts	at	index[j]	 in	edges

– Process	 j	has	index[j+1]-index[j]	 edges

176Advanced	MPI,	SC16	(11/14/2016)

Distributed graph constructor

§ MPI_Graph_create is	discouraged
– Not	scalable

– Not	deprecated	 yet	but	hopefully	soon

§ New	distributed	interface:
– Scalable,	allows	distributed	 graph	specification

• Either	 local	neighbors	or any	edge	 in	the	graph

– Specify	edge	weights

• Meaning	 undefined	but	optimization	 opportunity	for	vendors!

– Info	arguments
• Communicate	 assertions	 of	semantics	 to	the	MPI	library

• E.g.,	semantics	 of	edge	weights

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
177Advanced	MPI,	SC16	(11/14/2016)

MPI_Dist_graph_create_adjacent

§ indegree,	sources,	~weights	– source	proc.	Spec.
§ outdegree,	destinations,	~weights	– dest.	proc.	spec.
§ info,	reorder,	comm_dist_graph – as	usual
§ directed	graph
§ Each	edge	is	specified	twice,	once	as	out-edge	(at	the	source)	

and	once	as	in-edge	(at	the	dest)

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
178Advanced	MPI,	SC16	(11/14/2016)

MPI_Dist_graph_create_adjacent(MPI_Comm comm_old,
int indegree, const int sources[], const int sourceweights[],
int outdegree, const int destinations[],
const int destweights[], MPI_Info info, int reorder,
MPI_Comm *comm_dist_graph)

MPI_Dist_graph_create_adjacent

§ Process	0:
– Indegree:	 0

– Outdegree:	 2

– Dests:	{3,1}

§ Process	1:
– Indegree:	 3

– Outdegree:	 2

– Sources:	 {4,0,2}

– Dests:	{3,4}

§ …

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
179Advanced	MPI,	SC16	(11/14/2016)

MPI_Dist_graph_create

§ n	– number	of	source	nodes
§ sources	– n	source	nodes	
§ degrees	– number	of	edges	for	each	source
§ destinations,	weights	– dest.	processor	specification
§ info,	reorder	– as	usual
§ More	flexible	and	convenient	

– Requires	 global	communication

– Slightly	more	expensive	 than	adjacent	 specification

180Advanced	MPI,	SC16	(11/14/2016)

MPI_Dist_graph_create(MPI_Comm comm_old, int n,
const int sources[], const int degrees[],
const int destinations[], const int weights[], MPI_Info info,
int reorder, MPI_Comm *comm_dist_graph)

MPI_Dist_graph_create

§ Process	0:
– N:	2

– Sources:	 {0,1}

– Degrees:	 {2,1} *

– Dests:		{3,1,4}

§ Process	1:
– N:	2

– Sources:	 {2,3}

– Degrees:	 {1,1}

– Dests:	{1,2}

§ …

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
181

*	Note	that	in	this	example,	process	0	specifies	only	one	of	the	two	outgoing	edges
of	process	1;	the	second	outgoing	edge	needs	to	be	specified	by	another	process

Advanced	MPI,	SC16	(11/14/2016)

Distributed Graph Neighbor Queries

§ Query	the	number	of	neighbors	of	calling	process
§ Returns	indegree and	outdegree!
§ Also	info	if	weighted

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
182Advanced	MPI,	SC16	(11/14/2016)

§ Query	the	neighbor	list	of	calling	process

§ Optionally	return	weights

MPI_Dist_graph_neighbors_count(MPI_Comm comm,
int *indegree,int *outdegree, int *weighted)

MPI_Dist_graph_neighbors(MPI_Comm comm, int maxindegree,
int sources[], int sourceweights[], int maxoutdegree,
int destinations[],int destweights[])

Further Graph Queries

§ Status	is	either:
– MPI_GRAPH	 (ugs)

– MPI_CART

– MPI_DIST_GRAPH

– MPI_UNDEFINED	 (no	topology)

§ Enables	us	to	write	libraries	on	top	of	MPI	topologies!

183Advanced	MPI,	SC16	(11/14/2016)

MPI_Topo_test(MPI_Comm comm, int *status)

Neighborhood Collectives

§ Topologies	implement	no	communication!
– Just	helper	 functions

§ Collective	communications	only	cover	some	patterns
– E.g.,	no	stencil	pattern

§ Several	requests	for	“build	your	own	collective”	functionality	in	
MPI
– Neighborhood	collectives	 are	a	simplified	version

– Cf.	Datatypes	 for	communication	patterns!

184Advanced	MPI,	SC16	(11/14/2016)

Cartesian Neighborhood Collectives

§ Communicate	with	direct	neighbors	in	Cartesian	topology
– Corresponds	 to	cart_shift with	disp=1

– Collective	 (all	processes	 in	comm must	call	it,	including	processes	
without	neighbors)

– Buffers	 are	 laid	out	as	neighbor	sequence:
• Defined	by	order	of	dimensions,	 first	negative,	then	positive

• 2*ndims sources	 and	destinations

• Processes	 at	borders	(MPI_PROC_NULL)	 leave	holes	 in	buffers	(will	not	be	
updated	or	communicated)!

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI
185Advanced	MPI,	SC16	(11/14/2016)

Cartesian Neighborhood Collectives

§ Buffer	ordering	example:

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI
186Advanced	MPI,	SC16	(11/14/2016)

Graph Neighborhood Collectives

§ Collective	Communication	along	arbitrary	neighborhoods
– Order	 is	determined	 by	order	of	neighbors	as	returned	 by	

(dist_)graph_neighbors.

– Distributed	 graph	is	directed,	may	have	different	 numbers	 of	
send/recv neighbors

– Can	express	 dense	collective	operations	J

– Any	persistent	 communication	pattern!

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI
187Advanced	MPI,	SC16	(11/14/2016)

MPI_Neighbor_allgather

§ Sends	the	same	message	to	all	neighbors

§ Receives	indegree distinct	messages

§ Similar	to	MPI_Gather
– The	all	prefix	expresses	 that	each	process	 is	a	“root”	of	his	

neighborhood

§ Vector	version	for	full	flexibility

188Advanced	MPI,	SC16	(11/14/2016)

MPI_Neighbor_allgather(const void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)

MPI_Neighbor_alltoall

§ Sends	outdegree distinct	messages

§ Received	indegree distinct	messages

§ Similar	to	MPI_Alltoall
– Neighborhood	specifies	 full	communication	relationship

§ Vector	and	w	versions	for	full	flexibility

189Advanced	MPI,	SC16	(11/14/2016)

MPI_Neighbor_alltoall(const void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)

Nonblocking Neighborhood Collectives

§ Very	similar	to	nonblocking	collectives

§ Collective	invocation

§ Matching	in-order	(no	tags)
– No	wild	tricks	with	neighborhoods!	 In	order	matching	per	

communicator!

190Advanced	MPI,	SC16	(11/14/2016)

MPI_Ineighbor_allgather(…, MPI_Request *req);
MPI_Ineighbor_alltoall(…, MPI_Request *req);

Code Example

§ stencil_mpi_carttopo_neighcolls.c

§ Adds	neighborhood	collectives	to	the	topology

Advanced	MPI,	SC16	(11/14/2016) 191

Why is Neighborhood Reduce Missing?

§ Was	originally	proposed	(see	original	paper)

§ High	optimization	opportunities
– Interesting	 tradeoffs!

– Research	 topic

§ Not	standardized	due	to	missing	use	cases
– My	team	is	working	on	an	implementation

– Offering	 the	obvious	 interface

MPI_Ineighbor_allreducev(…);

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI
192Advanced	MPI,	SC16	(11/14/2016)

Topology Summary

§ Topology	functions	allow	users	to	specify	application	
communication	patterns/topology
– Convenience	 functions	 (e.g.,	Cartesian)

– Storing	neighborhood	 relations	 (Graph)

§ Enables	topology	mapping	(reorder=1)
– Not	widely	implemented	yet

– May	requires	manual	data	re-distribution	 (according	 to	new	rank	
order)

§ MPI	does	not	expose	information	about	the	network	topology	
(would	be	very	complex)

193Advanced	MPI,	SC16	(11/14/2016)

Neighborhood Collectives Summary

§ Neighborhood	collectives	add	communication	functions	to	
process	topologies
– Collective	 optimization	potential!

§ Allgather
– One	item	to	all	neighbors

§ Alltoall
– Personalized	 item	to	each	neighbor

§ High	optimization	potential	(similar	to	collective	operations)
– Interface	 encourages	 use	of	topology	mapping!

194Advanced	MPI,	SC16	(11/14/2016)

Section Summary

§ Process	topologies	enable:
– High-abstraction	 to	specify	communication	pattern

– Has	to	be	relatively	 static	(temporal	 locality)
• Creation	 is	expensive	 (collective)

– Offers	 basic	communication	 functions

§ Library	can	optimize:
– Communication	schedule	 for	neighborhood	 colls

– Topology	mapping

195Advanced	MPI,	SC16	(11/14/2016)

Recent Efforts of the MPI Forum for MPI-4
and Future MPI Standards

Introduction

§ The	MPI	Forum	continues	to	meet	every	3	months	to	define	
future	versions	of	the	MPI	Standard

§ We	describe	some	of	the	proposals	the	Forum	is	currently	
considering

§ None	of	these	topics	are	guaranteed	to	be	in	MPI-4
– These	are	simply	proposals	 that	are	being	considered

Advanced	MPI,	SC16	(11/14/2016) 197

MPI Working Groups

§ Point-to-point	communication

§ Fault	tolerance

§ Hybrid	programming

§ Persistence

§ Tools	interfaces

§ Large	counts

§ Others:	RMA,	Collectives,	I/O

§ http://meetings.mpi-forum.org/MPI_4.0_main_page.php

Advanced	MPI,	SC16	(11/14/2016) 198

Point-to-Point Working Group

Example Application: Genome Assembly
Basic	edge	merging	algorithm

106+ outstanding	messages
per	process	

(Human	genome	on	Cray	Edison	*)

remote	searchlocal	node

remote	nodes
ACGCGATTCAG

GCGATTCAGTA

DNA	consensus	 sequence

1. Send	local	DNA	unit	to	that	node;	
2. Search	matching	unit	on	that	node;	
3. Merge	two	units	on	that	node;
4. Return	merged	unit.

ACGCGATTCAG

ACGCGATTCAGTA

(64Bytes	~	1MBytes	for	single	message)

Step	1

Step	2,	3

Step	4

process	(server	1)

process	(server	2)

process	(server	3)

DNA	units	1:	
ACGCGATTCAG

DNA	units	3:	
ATGAGGCATAC

DNA	units	2:	
GCATAGTATCG

memory

process	(sender)

*	64GB	memory	per	node,	
1KB	memory	per	DNA	reads,	
exclude	runtime	memory	
consumption.

Large	amount	of	outstanding	 data	movement

Advanced	MPI,	SC16	(11/14/2016) 200

Proposal 1: Batched Communication Operations

§ MPI-3.1	semantics
– Each	point-to-point	 operation	creates	 a	new	request	 object

– MPI	library	might	run	out	of	request	objects	after	a	few	thousand	
operations

– Application	cannot	issue	a	lot	of	messages	 to	fully	utilize	 the	network

§ Batched	operations
– RMA-like	semantics	 for	MPI	send/recv communication

• Application	 frees	request	as	soon	as	the	operation	 is	issued

• Batch	completion	 of	all	operations	 on	a	communicator

– MPI_COMM_WAITALL

– Proportionally	 reduced	number	of	requests

– Can	allow	applications	 to	consolidate	multiple	completions	 into	a	
single	request

Advanced	MPI,	SC16	(11/14/2016) 201

Proposal 2: Communication Relaxation Hints

§ mpi_assert_no_any_tag
– The	process	will	not	use	MPI_ANY_TAG

§ mpi_assert_no_any_source
– The	process	will	not	use	MPI_ANY_SOURCE

§ mpi_assert_exact_length
– Receive	 buffers	must	be	correct	 size	for	messages

§ mpi_assert_overtaking_allowed
– All	messages	 are	logically	concurrent

Advanced	MPI,	SC16	(11/14/2016) 202

Fault Tolerance Working Group

204

Improved Support for Fault Tolerance

§ MPI	always	had	support	 for	error	handlers	and	allows	implementations	
to	return	an	error	code	and	remain	alive

§ MPI	Forum	working	on	additional	 support	 for	MPI-4

§ Current	 proposal	handles	 fail-stop	process	 failures	 (not	silent	data	
corruption	or	Byzantine	 failures)
§ If	a	communication	operation	fails	because	the	other	process	has	failed,	the	function	

returns	error	code	MPI_ERR_PROC_FAILED

§ User	can	call	MPI_Comm_shrink to	create	a	new	communicator	that	excludes	failed	
processes

§ Collective	communication	can	be	performed	on	the	new	communicator

Advanced	MPI,	SC16	(11/14/2016)

Proposal 1: Noncatastrophic Errors

§ Currently	the	state	of	MPI	is	undefined	if	any	error	occurs
§ Even	simple	errors,	such	as	incorrect	arguments,	can	cause	the	

state	of	MPI	to	be	undefined
§ Noncatastrophic errors	are	an	opportunity	for	the	MPI	

implementation	to	define	some	errors	as	“ignorable”
§ For	an	error,	the	user	can	query	if	it	is	catastrophic	or	not
§ If	the	error	is	not	catastrophic,	the	user	can	simply	pretend	like	

(s)he	never	issued	the	operation	and	continue

205

Proposal 2: Error Handlers

§ Cleaner	semantics	for	error	handling
§ Even	with	MPI-3.1,	errors	are	not	always	fatal

– But	semantics	of	error	handling	are	cumbersome	 to	use
– Their	 specification	can	use	more	precision

§ How	are	error	handlers	inherited?
§ Move	default	error	handlers	from	MPI_COMM_WORLD	to	

MPI_COMM_SELF

206

Proposal 3: User Level Failure Mitigation

● Enable	application-level	recovery	by	providing	minimal	FT	API	
to	prevent	deadlock	and	enable	recovery

●Don’t	do	recovery	for	the	application,	but	let	the	application	
(or	a	library)	do	what	is	best.

● Currently	focused	on	process	failure	(not	data	errors	or	
protection)

207

Hybrid Programming Working Group

MPI-3.1 Performance/Interoperability Concerns

§ Resource	sharing	between	MPI	processes
– System	resources	 do	not	scale	at	the	same	rate	as	processing	 cores

• Memory,	network	endpoints,	 TLB	entries,	…
• Sharing	is	necessary

– MPI+threads gives	a	method	 for	such	sharing	of	resources

§ Performance	Concerns
– MPI-3.1	provides	 a	single	view	of	the	MPI	stack	to	all	threads

• Requires	 all	MPI	objects	(requests,	 communicators)	 to	be	shared	between	
all	threads

• Not	scalable	 to	large	number	of	threads
• Inefficient	when	sharing	of	objects	 is	not	required	by	the	user

– MPI-3.1	does	not	allow	a	high-level	 language	 to	interchangeably	 use	
OS	processes	 or	threads
• No	notion	of	addressing	 a	single	or	a	collection	 of	threads
• Needs	 to	be	emulated	with	tags	or	communicators

Advanced	MPI,	SC16	(11/14/2016) 209

MPI Endpoints: Proposal for MPI-4

§ Have	multiple	addressable	communication	entities	within	a	
single	process
– Instantiated	 in	the	form	of	multiple	ranks	per	MPI	process

§ Each	rank	can	be	associated	with	one	or	more	threads

§ Lesser	contention	for	communication	on	each	“rank”

§ In	the	extreme	case,	we	could	have	one	rank	per	thread	(or	
some	ranks	might	be	used	by	a	single	thread)

Advanced	MPI,	SC16	(11/14/2016) 210

MPI Endpoints Semantics

§ Creates	new	MPI	ranks	from	existing	ranks	in	parent	communicator
• Each	process	in	parent	comm.	requests	 a	number	of	endpoints
• Array	of	output	handles,	 one	per	local	rank	(i.e.	endpoint)	 in	endpoints	 communicator
• Endpoints	 have	MPI	process	 semantics	(e.g.	progress,	matching,	collectives,	…)

§ Threads	using	endpoints	 behave	like	MPI	processes
• Provide	per-thread	communication	 state/resources
• Allows	implementation	 to	provide	 process-like	 performance	for	threads

Parent
Comm

Rank

M T T

Parent	MPI	Process

RankRank Rank

M T T

Parent	MPI	Process

Rank Rank

M T T

Parent	MPI	Process

Rank
E.P.

Comm

MPI_Comm_create_endpoints(MPI_Comm parent_comm, int my_num_ep,
MPI_Info info, MPI_Comm out_comm_handles[])

Advanced	MPI,	SC16	(11/14/2016) 211

Persistence Working Group

Persistent Collective Operations
§ An	all-to-all	 transfer	 is	done	many	times	in	an	application

§ The	specific	 sends	and	receives	 represented	 never	change	 (size,	 type,	
lengths,	 transfers)

§ A	nonblocking persistent	 collective	operation	can	take	the	time	to	apply	a	
heuristic	and	choose	a	faster	 way	to	move	 that	data

§ Fixed	cost	of	making	those	decisions	could	be	high	(are	amortized	 over	all	
the	times	the	function	 is	used

§ Static	resource	 allocation	can	be	done

§ Choose	 fast(er)	 algorithm,	take	advantage	 of	special	 cases

§ Reduce	queueing	costs

§ Special	limited	hardware	 can	be	allocated	if	available

§ Choice	of	multiple	transfer	 paths	could	also	be	performed

Advanced	MPI,	SC16	(11/14/2016) 213

Basics

§ Mirror	regular	nonblocking collective	operations

§ For	each	nonblockingMPI	collective,	add	a	persistent	variant

§ For	every	MPI_I<coll>,	add	MPI_<coll>_init

§ Parameters	are	identical	to	the	corresponding	nonblocking
variant

§ All	arguments	“fixed”	for	subsequent	uses

§ Persistent	collective	operations	cannot	be	matched	with	
blocking	or	nonblocking collective	calls

Advanced	MPI,	SC16	(11/14/2016) 214

Init/Start

§ The	init function	calls	only	perform	initialization;	do	not	start	
the	operation

§ E.g.,	MPI_Allreduce_init
– Produces	a	persistent	 request	 (not	destroyed	by	completion)

§ Works	with	MPI_Start/MPI_Startall (cannot	have	multiple	
operations	on	the	same	communicator	in	Startall)

§ Only	inactive	requests	can	be	started

§ MPI_Request_free can	free	inactive	requests

Advanced	MPI,	SC16	(11/14/2016) 215

Ordering of Inits and Starts

§ Inits are	nonblocking collective	calls	and	must	be	ordered

§ Persistent	collective	operations	must	be	started	in	the	same	
order	at	all	processes

§ Startall cannot	contain	multiple	operations	on	the	same	
communicator	due	to	ordering	ambiguity

Advanced	MPI,	SC16	(11/14/2016) 216

Example

Advanced	MPI,	SC16	(11/14/2016) 217

Tools Working Group

Active Proposals (1/2)

§ New	interface	to	replace	PMPI
– Known,	longstanding	problems	with	the	current	profiling	interface	

PMPI
• One	tool	at	a	time	can	use	 it

• Forces	tools	to	be	monolithic	 (a	single	 shared	library)

• The	 interception	model	 is	OS	dependent

– New	interface
• Callback	design

• Multiple	 tools	can	potentially	 attach

• Maintain	 all	old	functionality

§ New	feature	for	event	notification	in	MPI_T
– PERUSE

– Tool	registers	 for	interesting	 event	and	gets	callback	when	 it	happens	

Advanced	MPI,	SC16	(11/14/2016) 219

Active Proposals (2/2)

§ Debugger	support	- MPIR	interface
– Fixing	some	bugs	in	the	original	“blessed”	document

• Missing	 line	numbers!

– Support	non-traditional	MPI	implementations

• Ranks	are	implemented	 as	threads

– Support	for	dynamic	applications
• Commercial	 applications/	 Ensemble	 applications

• Fault	tolerance

– Handle	 Introspection	 Interface
• See	inside	MPI	to	get	details	 about	MPI	Objects

– Communicators,	 File	Handles,	etc.

Advanced	MPI,	SC16	(11/14/2016) 220

Sessions Working Group

Before MPI-3.1, this could be erroneous

int my_thread1_main(void *context) {
MPI_Initialized(&flag);
// …

}

int my_thread2_main(void *context) {
MPI_Initialized(&flag);
// …

}

int main(int argc, char **argv) {
MPI_Init_thread(…, MPI_THREAD_FUNNELED, …);
pthread_create(…, my_thread1_main, NULL);
pthread_create(…, my_thread2_main, NULL);
// …

}

These	might
run	at	the	same	time	(!)

Advanced	MPI,	SC16	(11/14/2016) 222

What we want

§ Any	thread	(e.g.,	library)	can	use	MPI	any	time	it	wants

§ But	still	be	able	to	totally	clean	up	MPI	if/when	desired

§ New	parameters	to	initialize	the	MPI	API

MPI	Process
// Library 1
MPI_Init(…);

// Library 2
MPI_Init(…);

// Library 3
MPI_Init(…);

// Library 4
MPI_Init(…);

// Library 5
MPI_Init(…);

// Library 6
MPI_Init(…);// Library 7

MPI_Init(…);

// Library 8
MPI_Init(…);

// Library 9
MPI_Init(…);

// Library 10
MPI_Init(…);

// Library 11
MPI_Init(…);

// Library 12
MPI_Init(…);

Advanced	MPI,	SC16	(11/14/2016) 223

New Concept: “Session”

§ A	local	handle	to	the	MPI	library
– Implementation	 intent:	lightweight	 /	uses	very	few	resources

– Can	also	cache	some	local	state

§ Can	have	multiple	sessions	in	an	MPI	process
– MPI_Session_init(…,	 &session);

– MPI_Session_finalize(…,	 &session);

§ Each	session	is	a	unit	of	isolation

ocean	 library

MPI_SESSION_INIT

atmosphere	 library

MPI_SESSION_INIT

MPI	library

ocean	
session

atmosphere	
session

Unique	handles	 to	the	
underlying	MPI	library

Unique	
errhandlers,	
thread-levels,	
info,	local	
state,	etc.

Advanced	MPI,	SC16	(11/14/2016) 224

Overview

§ General	scheme:
– Query	the	underlying	 run-

time	system
• Get	a	“set”	of	processes

– Determine	 the	processes	 you	
want
• Create	an	MPI_Group

– Create	 a	communicator	with	
just	those	processes
• Create	an	MPI_Comm

Query	runtime
for	set	of	processes

MPI_Group

MPI_Comm

MPI_Session

Advanced	MPI,	SC16	(11/14/2016) 225

Static sets of processes

§ Two	sets	are	mandated	to	exist
1. A	set	of	processes	 effectively	 equivalent	 to	the	processes	 in	MPI-

3.1’s	MPI_COMM_WORLD

2. A	set	containing	only	a	single	process

§ Sets	are	identified	by	string	name
– “mpi://WORLD”:	refers	 to	set	#1,	above

– “mpi://SELF”:	refers	 to	set	#2,	above

§ By	definition,	processes	will	be	in	more	than	one	set

Advanced	MPI,	SC16	(11/14/2016) 226

Large Counts Working Group

Problem with Large Counts

§ MPI_Send/Recv and	other	functions	take	“int”	as	the	count	
for	data
– What	happens	 for	data	larger	than	2GB	x	datatype size?

– You	create	a	new	large	“contiguous”	derived	 datatype and	send	that

– Possible,	but	clumsy

§ What	about	duplicating	all	MPI	functions	to	change	“int”	to	
“MPI_Count”	(which	is	a	large,	typically	64-bit,	integer)
– Doubles	 the	number	of	MPI	functions

– Possible,	but	clumsy

Advanced	MPI,	SC16	(11/14/2016) 228

New C11 Bindings

§ Use	C11	_Generic	type	to	provide	multiple	function	
prototypes
– Like	C++	 function	overloading,	 but	done	with	compile	 time	macro	

replacement

§ MPI_Sendwill	have	two	function	signatures
– One	for	traditional	 “int”	arguments

– One	for	new	“MPI_Count”	arguments

§ Fully	backward	compatible	for	existing	applications

§ New	applications	can	promote	their	data	lengths	to	64-bit	
without	changing	functions	everywhere

Advanced	MPI,	SC16	(11/14/2016) 229

Concluding Remarks

Conclusions

§ Parallelism	is	critical	today,	given	that	it	is	the	only	way	to	
achieve	performance	improvement	with	modern	hardware

§ MPI	is	an	industry	standard	model	for	parallel	programming
– A	large	number	of	implementations	 of	MPI	exist	 (both	commercial	and	

public	domain)

– Virtually	every	system	in	the	world	supports	MPI

§ Gives	user	explicit	control	on	data	management

§ Widely	used	by	many	scientific	applications	with	great	success

§ Your	application	can	be	next!

Advanced	MPI,	SC16	(11/14/2016) 231

Web Pointers

§ MPI	standard	 :	http://www.mpi-forum.org/docs/docs.html

§ MPI	Forum	:	http://www.mpi-forum.org/

§ MPI	implementations:	
– MPICH	:	http://www.mpich.org

– MVAPICH	:	http://mvapich.cse.ohio-state.edu/

– Intel	MPI:	http://software.intel.com/en-us/intel-mpi-library/

– Microsoft	MPI:	https://msdn.microsoft.com/en-us/library/bb524831%28v=vs.85%29.aspx

– Open	MPI	:	http://www.open-mpi.org/

– IBM	MPI,	Cray	MPI,	HP	MPI,	TH	MPI,	…

§ Several	MPI	tutorials	can	be	found	on	the	web

Advanced	MPI,	SC16	(11/14/2016) 232

New Tutorial Books on MPI

Advanced	MPI,	SC16	(11/14/2016) 233

§ For	basic	MPI
– Using	MPI,	3rd edition,	2014,	by	William	Gropp,	Ewing	Lusk	and	Anthony	Skjellum

– https://mitpress.mit.edu/using-MPI-3ed

§ For	advanced	MPI,	including	MPI-3

– Using	Advanced	MPI,	2014,	by	William	Gropp,	Torsten Hoefler,	Rajeev	Thakur	and	
Ewing	Lusk

– https://mitpress.mit.edu/using-advanced-MPI

New Book on Parallel Programming Models
Edited	by	Pavan Balaji
• MPI: W.	Gropp and	R.	Thakur
• GASNet: P.	Hargrove
• OpenSHMEM: J.	Kuehn	and	S.	Poole
• UPC: K.	Yelick and	Y.	Zheng
• Global	Arrays: S.	Krishnamoorthy,	J.	Daily,	A.	Vishnu,	

and	B.	Palmer
• Chapel: B.	Chamberlain
• Charm++: L.	Kale,	N.	Jain,	and	J.	Lifflander
• ADLB: E.	Lusk,	R.	Butler,	and	S.	Pieper
• Scioto: J.	Dinan
• SWIFT: T.	Armstrong,	J.	M.	Wozniak,	M.	Wilde,	and	I.	

Foster
• CnC: K.	Knobe,	M.	Burke,	and	F.	Schlimbach
• OpenMP: B.	Chapman,	D.	Eachempati,	and	S.	

Chandrasekaran
• Cilk Plus: A.	Robison	and	C.	Leiserson
• Intel	TBB: A.	Kukanov
• CUDA: W.	Hwu and	D.	Kirk
• OpenCL: T.	Mattson

https://mitpress.mit.edu/models

234Advanced	MPI,	SC16	(11/14/2016)

